Esempio n. 1
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        import numpy
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])

        # create features
        base_features = shogun_factory.create_features(data.examples, param)

        combined_features = CombinedFeatures()

        ########################################################
        print "creating a masked kernel for possible subset:"
        ########################################################

        power_set_tasks = power_set(data.get_task_ids())

        for active_task_ids in power_set_tasks:

            print "masking all entries other than:", active_task_ids

            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums,
                                                       data.task_vector_nums,
                                                       active_task_ids)

            # normalize trace
            if param.flags.has_key(
                    "normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(data.get_task_ids()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)

            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)

            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)

            # append features
            combined_features.append_feature_obj(base_features)

            print "------"

        combined_kernel.init(combined_features, combined_features)

        #combined_kernel.precompute_subkernels()

        self.additional_information[
            "weights before trainng"] = combined_kernel.get_subkernel_weights(
            )
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        if param.flags["mkl_q"] >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.flags["mkl_q"])

            # set interleaved optimization
            if param.flags.has_key("interleaved"):
                svm.set_interleaved_optimization_enabled(
                    param.flags["interleaved"])

            # set solver type
            if param.flags.has_key(
                    "solver_type") and param.flags["solver_type"]:
                if param.flags["solver_type"] == "ST_CPLEX":
                    svm.set_solver_type(ST_CPLEX)
                if param.flags["solver_type"] == "ST_DIRECT":
                    svm.set_solver_type(ST_DIRECT)
                if param.flags["solver_type"] == "ST_NEWTON":
                    svm.set_solver_type(ST_NEWTON)
                if param.flags["solver_type"] == "ST_GLPK":
                    svm.set_solver_type(ST_GLPK)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            svm = SVMLight(param.cost, combined_kernel, lab)

        # optimization settings
        num_threads = 4
        svm.parallel.set_num_threads(num_threads)

        if param.flags.has_key("epsilon"):
            svm.set_epsilon(param.flags["epsilon"])

        # enable output
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        # disable unsupported optimizations (due to special normalizer)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        # set cost
        if param.flags["normalize_cost"]:

            norm_c_pos = param.cost / float(
                len([l for l in data.labels if l == 1]))
            norm_c_neg = param.cost / float(
                len([l for l in data.labels if l == -1]))
            svm.set_C(norm_c_neg, norm_c_pos)

        else:

            svm.set_C(param.cost, param.cost)

        svm.train()

        # prepare mapping
        weight_map = {}
        weights = combined_kernel.get_subkernel_weights()
        for (i, pset) in enumerate(power_set_tasks):
            print pset
            subset_str = str([data.id_to_name(task_idx) for task_idx in pset])
            weight_map[subset_str] = weights[i]

        # store additional info
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["weight_map"] = weight_map

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name),
                               len(power_set_tasks), combined_kernel, svm,
                               param)

        return svms
Esempio n. 2
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
                
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

                
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        kernel_matrix = base_wdk.get_kernel_matrix()
        lab = shogun_factory.create_labels(data.labels)
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        from shogun.Kernel import CombinedKernel, CustomKernel
        
        combined_kernel = CombinedKernel()
        
        # indicator to which task each example belongs
        task_vector = data.task_vector_names
        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            leaf_names = [leaf.name for leaf in node.get_leaves()]
            
            print "masking all entries other than:", leaf_names
            
            # init matrix
            kernel_matrix_node = numpy.zeros(kernel_matrix.shape)
            
            # fill matrix for node
            for (i, task_lhs) in enumerate(task_vector):
                for (j, task_rhs) in enumerate(task_vector):
                    
                    # only copy values, if both tasks are present in subtree
                    if task_lhs in leaf_names and task_rhs in leaf_names:
                        kernel_matrix_node[i,j] = kernel_matrix[i,j]
                    
            # create custom kernel
            kernel_node = CustomKernel()
            kernel_node.set_full_kernel_matrix_from_full(kernel_matrix_node)
            
            
            # append custom kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_node)                
            
            print "------"
        

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
        
        
            num_threads = 4

            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            svm.set_solver_type(ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX)
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
            svm.parallel.set_num_threads(num_threads)
            #svm.set_linadd_enabled(False)
            #svm.set_batch_computation_enabled(False)
            
            svm.train()
        
            print "subkernel weights (after):", combined_kernel.get_subkernel_weights()    
            
        else:
            
            # create SVM (disable unsupported optimizations)
            svm = SVMLight(param.cost, combined_kernel, lab)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)
            
            svm.train()


        ########################################################
        print "svm objective:"
        print svm.get_objective()
        ########################################################
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_id in train_data.keys():
            svms[task_id] = svm


        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        

        #numpy.random.seed(1337)
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

                
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)


        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)    
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])
        

        # create features
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        


        ########################################################
        print "creating a masked kernel for each node:"
        ########################################################
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()

        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            active_task_ids = [data.name_to_id(leaf.name) for leaf in node.get_leaves()]
            
            print "masking all entries other than:", active_task_ids
            
        
            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums, data.task_vector_nums, active_task_ids)
            
            # normalize trace
            if param.flags.has_key("normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(node.get_leaves()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)
            
            # create kernel
            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)
            
            
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)
        
            # append features
            combined_features.append_feature_obj(base_features)

            print "------"
        

        combined_kernel.init(combined_features, combined_features)                
        #combined_kernel.precompute_subkernels()
                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        
        if param.flags["mkl_q"] >= 1.0:
            
            # set up MKL    
            svm = MKLClassification()

            # set the "q" in q-norm MKL
            svm.set_mkl_norm(param.flags["mkl_q"])
            
            # set interleaved optimization
            if param.flags.has_key("interleaved"):
                svm.set_interleaved_optimization_enabled(param.flags["interleaved"])
            
            # set solver type
            if param.flags.has_key("solver_type") and param.flags["solver_type"]:
                if param.flags["solver_type"] == "ST_CPLEX":
                    svm.set_solver_type(ST_CPLEX)
                if param.flags["solver_type"] == "ST_DIRECT":
                    svm.set_solver_type(ST_DIRECT)
                if param.flags["solver_type"] == "ST_NEWTON":
                    svm.set_solver_type(ST_NEWTON)
                if param.flags["solver_type"] == "ST_GLPK":
                    svm.set_solver_type(ST_GLPK)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
        else:
            # create vanilla SVM 
            svm = SVMLight(param.cost, combined_kernel, lab)


        # optimization settings
        num_threads = 4
        svm.parallel.set_num_threads(num_threads)
        
        if param.flags.has_key("epsilon"):
            svm.set_epsilon(param.flags["epsilon"])
        
        
        # enable output        
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        
        # disable unsupported optimizations (due to special normalizer)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # set cost
        if param.flags["normalize_cost"]:
            
            norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
            norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
            svm.set_C(norm_c_neg, norm_c_pos)
            
        else:
            
            svm.set_C(param.cost, param.cost)
        
        
        # start training
        svm.train()


        ########################################################
        print "svm objective:"
        print svm.get_objective()
        ########################################################
        
        # store additional info
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["weights"] = combined_kernel.get_subkernel_weights()
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), len(nodes), combined_kernel, svm)

        
        return svms