def classifier_mpdsvm_modular(fm_train_real=traindat, fm_test_real=testdat, label_train_twoclass=label_traindat, C=1, epsilon=1e-5): from shogun.Features import RealFeatures, BinaryLabels from shogun.Kernel import GaussianKernel from shogun.Classifier import MPDSVM feats_train = RealFeatures(fm_train_real) feats_test = RealFeatures(fm_test_real) width = 2.1 kernel = GaussianKernel(feats_train, feats_train, width) labels = BinaryLabels(label_train_twoclass) svm = MPDSVM(C, kernel, labels) svm.set_epsilon(epsilon) svm.train() kernel.init(feats_train, feats_test) svm.apply().get_labels() predictions = svm.apply() return predictions, svm, predictions.get_labels()
def classifier_mpdsvm_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,C=1,epsilon=1e-5): from shogun.Features import RealFeatures, BinaryLabels from shogun.Kernel import GaussianKernel from shogun.Classifier import MPDSVM feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) width=2.1 kernel=GaussianKernel(feats_train, feats_train, width) labels=BinaryLabels(label_train_twoclass) svm=MPDSVM(C, kernel, labels) svm.set_epsilon(epsilon) svm.train() kernel.init(feats_train, feats_test) svm.apply().get_labels() predictions = svm.apply() return predictions, svm, predictions.get_labels()
def mpdsvm (): print 'MPDSVM' from shogun.Features import RealFeatures, Labels from shogun.Kernel import GaussianKernel from shogun.Classifier import MPDSVM feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) width=2.1 kernel=GaussianKernel(feats_train, feats_train, width) C=1 epsilon=1e-5 labels=Labels(label_train_twoclass) svm=MPDSVM(C, kernel, labels) svm.set_epsilon(epsilon) svm.train() kernel.init(feats_train, feats_test) svm.classify().get_labels()