def statistics_quadratic_time_mmd():
    from shogun.Features import RealFeatures
    from shogun.Features import MeanShiftDataGenerator
    from shogun.Kernel import GaussianKernel
    from shogun.Statistics import QuadraticTimeMMD
    from shogun.Statistics import BOOTSTRAP, MMD2_SPECTRUM, MMD2_GAMMA, BIASED, UNBIASED
    from shogun.Distance import EuclideanDistance
    from shogun.Mathematics import Statistics, IntVector

    # note that the quadratic time mmd has to store kernel matrices
    # which upper bounds the sample size
    n = 100
    dim = 2
    difference = 0.5

    # streaming data generator for mean shift distributions
    gen_p = MeanShiftDataGenerator(0, dim)
    gen_q = MeanShiftDataGenerator(difference, dim)

    # Stream examples and merge them in order to compute median on joint sample
    # alternative is to call a different constructor of QuadraticTimeMMD
    features = gen_p.get_streamed_features(n)
    features = features.create_merged_copy(gen_q.get_streamed_features(n))

    # use data generator class to produce example data
    data = features.get_feature_matrix()

    print "dimension means of X", mean(data.T[0:n].T)
    print "dimension means of Y", mean(data.T[n : 2 * n + 1].T)

    # compute median data distance in order to use for Gaussian kernel width
    # 0.5*median_distance normally (factor two in Gaussian kernel)
    # However, shoguns kernel width is different to usual parametrization
    # Therefore 0.5*2*median_distance^2
    # Use a subset of data for that, only 200 elements. Median is stable
    # Use a permutation set to temporarily merge features in merged examples
    subset = IntVector.randperm_vec(features.get_num_vectors())
    subset = subset[0:200]
    features.add_subset(subset)
    dist = EuclideanDistance(features, features)
    distances = dist.get_distance_matrix()
    features.remove_subset()
    median_distance = Statistics.matrix_median(distances, True)
    sigma = median_distance ** 2
    print "median distance for Gaussian kernel:", sigma
    kernel = GaussianKernel(10, sigma)

    mmd = QuadraticTimeMMD(kernel, features, n)

    # perform test: compute p-value and test if null-hypothesis is rejected for
    # a test level of 0.05 using different methods to approximate
    # null-distribution
    statistic = mmd.compute_statistic()
    alpha = 0.05

    print "computing p-value using bootstrapping"
    mmd.set_null_approximation_method(BOOTSTRAP)
    # normally, at least 250 iterations should be done, but that takes long
    mmd.set_bootstrap_iterations(10)
    # bootstrapping allows usage of unbiased or biased statistic
    mmd.set_statistic_type(UNBIASED)
    p_value = mmd.compute_p_value(statistic)
    print "p_value:", p_value
    print "p_value <", alpha, ", i.e. test sais p!=q:", p_value < alpha

    # only can do this if SHOGUN was compiled with LAPACK so check
    if "sample_null_spectrum" in dir(QuadraticTimeMMD):
        print "computing p-value using spectrum method"
        mmd.set_null_approximation_method(MMD2_SPECTRUM)
        # normally, at least 250 iterations should be done, but that takes long
        mmd.set_num_samples_sepctrum(50)
        mmd.set_num_eigenvalues_spectrum(n - 10)
        # spectrum method computes p-value for biased statistics only
        mmd.set_statistic_type(BIASED)
        p_value = mmd.compute_p_value(statistic)
        print "p_value:", p_value
        print "p_value <", alpha, ", i.e. test sais p!=q:", p_value < alpha

    print "computing p-value using gamma method"
    mmd.set_null_approximation_method(MMD2_GAMMA)
    # gamma method computes p-value for biased statistics only
    mmd.set_statistic_type(BIASED)
    p_value = mmd.compute_p_value(statistic)
    print "p_value:", p_value
    print "p_value <", alpha, ", i.e. test sais p!=q:", p_value < alpha

    # sample from null distribution (these may be plotted or whatsoever)
    # mean should be close to zero, variance stronly depends on data/kernel
    # bootstrapping, biased statistic
    print "sampling null distribution using bootstrapping"
    mmd.set_null_approximation_method(BOOTSTRAP)
    mmd.set_statistic_type(BIASED)
    mmd.set_bootstrap_iterations(10)
    null_samples = mmd.bootstrap_null()
    print "null mean:", mean(null_samples)
    print "null variance:", var(null_samples)

    # sample from null distribution (these may be plotted or whatsoever)
    # mean should be close to zero, variance stronly depends on data/kernel
    # spectrum, biased statistic
    print "sampling null distribution using spectrum method"
    mmd.set_null_approximation_method(MMD2_SPECTRUM)
    mmd.set_statistic_type(BIASED)
    # 200 samples using 100 eigenvalues
    null_samples = mmd.sample_null_spectrum(50, 10)
    print "null mean:", mean(null_samples)
    print "null variance:", var(null_samples)
def statistics_quadratic_time_mmd ():
	from shogun.Features import RealFeatures
	from shogun.Features import MeanShiftRealDataGenerator
	from shogun.Kernel import GaussianKernel
	from shogun.Statistics import QuadraticTimeMMD
	from shogun.Statistics import BOOTSTRAP, MMD2_SPECTRUM, MMD2_GAMMA, BIASED, UNBIASED
	from shogun.Distance import EuclideanDistance
	from shogun.Mathematics import Statistics, IntVector

	# note that the quadratic time mmd has to store kernel matrices
	# which upper bounds the sample size
	n=500
	dim=2
	difference=0.5

	# streaming data generator for mean shift distributions
	gen_p=MeanShiftRealDataGenerator(0, dim)
	gen_q=MeanShiftRealDataGenerator(difference, dim)
	
	# Stream examples and merge them in order to compute median on joint sample
	# alternative is to call a different constructor of QuadraticTimeMMD
	features=gen_p.get_streamed_features(n)
	features=features.create_merged_copy(gen_q.get_streamed_features(n))
	
	# use data generator class to produce example data
	data=features.get_feature_matrix()
	
	print "dimension means of X", mean(data.T[0:n].T)
	print "dimension means of Y", mean(data.T[n:2*n+1].T)

	# compute median data distance in order to use for Gaussian kernel width
	# 0.5*median_distance normally (factor two in Gaussian kernel)
	# However, shoguns kernel width is different to usual parametrization
	# Therefore 0.5*2*median_distance^2
	# Use a subset of data for that, only 200 elements. Median is stable
	# Use a permutation set to temporarily merge features in merged examples
	subset=IntVector.randperm_vec(features.get_num_vectors())
	subset=subset[0:200]
	features.add_subset(subset)
	dist=EuclideanDistance(features, features)
	distances=dist.get_distance_matrix()
	features.remove_subset()
	median_distance=Statistics.matrix_median(distances, True)
	sigma=median_distance**2
	print "median distance for Gaussian kernel:", sigma
	kernel=GaussianKernel(10,sigma)

	mmd=QuadraticTimeMMD(kernel,features, n)

	# perform test: compute p-value and test if null-hypothesis is rejected for
	# a test level of 0.05 using different methods to approximate
	# null-distribution
	statistic=mmd.compute_statistic()
	alpha=0.05
	
	print "computing p-value using bootstrapping"
	mmd.set_null_approximation_method(BOOTSTRAP)
	# normally, at least 250 iterations should be done, but that takes long
	mmd.set_bootstrap_iterations(10)
	# bootstrapping allows usage of unbiased or biased statistic
	mmd.set_statistic_type(UNBIASED)
	p_value=mmd.compute_p_value(statistic)
	print "p_value:", p_value
	print "p_value <", alpha, ", i.e. test sais p!=q:", p_value<alpha
	
	# only can do this if SHOGUN was compiled with LAPACK so check
	if "sample_null_spectrum" in dir(QuadraticTimeMMD):
		print "computing p-value using spectrum method"
		mmd.set_null_approximation_method(MMD2_SPECTRUM)
		# normally, at least 250 iterations should be done, but that takes long
		mmd.set_num_samples_sepctrum(50)
		mmd.set_num_eigenvalues_spectrum(n-10)
		# spectrum method computes p-value for biased statistics only
		mmd.set_statistic_type(BIASED)
		p_value=mmd.compute_p_value(statistic)
		print "p_value:", p_value
		print "p_value <", alpha, ", i.e. test sais p!=q:", p_value<alpha
	
	print "computing p-value using gamma method"
	mmd.set_null_approximation_method(MMD2_GAMMA)
	# gamma method computes p-value for biased statistics only
	mmd.set_statistic_type(BIASED)
	p_value=mmd.compute_p_value(statistic)
	print "p_value:", p_value
	print "p_value <", alpha, ", i.e. test sais p!=q:", p_value<alpha
	
	# sample from null distribution (these may be plotted or whatsoever)
	# mean should be close to zero, variance stronly depends on data/kernel
	# bootstrapping, biased statistic
	print "sampling null distribution using bootstrapping"
	mmd.set_null_approximation_method(BOOTSTRAP)
	mmd.set_statistic_type(BIASED)
	mmd.set_bootstrap_iterations(10)
	null_samples=mmd.bootstrap_null()
	print "null mean:", mean(null_samples)
	print "null variance:", var(null_samples)
	
	# sample from null distribution (these may be plotted or whatsoever)
	# mean should be close to zero, variance stronly depends on data/kernel
	# spectrum, biased statistic
	print "sampling null distribution using spectrum method"
	mmd.set_null_approximation_method(MMD2_SPECTRUM)
	mmd.set_statistic_type(BIASED)
	# 200 samples using 100 eigenvalues
	null_samples=mmd.sample_null_spectrum(50,10)
	print "null mean:", mean(null_samples)
	print "null variance:", var(null_samples)
Esempio n. 3
0
def statistics_hsic ():
	from shogun.Features import RealFeatures
	from shogun.Features import DataGenerator
	from shogun.Kernel import GaussianKernel
	from shogun.Statistics import HSIC
	from shogun.Statistics import BOOTSTRAP, HSIC_GAMMA
	from shogun.Distance import EuclideanDistance
	from shogun.Mathematics import Statistics, IntVector

	# note that the HSIC has to store kernel matrices
	# which upper bounds the sample size
	n=250
	difference=3
	angle=pi/3

	# use data generator class to produce example data
	data=DataGenerator.generate_sym_mix_gauss(n,difference,angle)
	#plot(data[0], data[1], 'x');show()

	# create shogun feature representation
	features_x=RealFeatures(array([data[0]]))
	features_y=RealFeatures(array([data[1]]))

	# compute median data distance in order to use for Gaussian kernel width
	# 0.5*median_distance normally (factor two in Gaussian kernel)
	# However, shoguns kernel width is different to usual parametrization
	# Therefore 0.5*2*median_distance^2
	# Use a subset of data for that, only 200 elements. Median is stable
	subset=IntVector.randperm_vec(features_x.get_num_vectors())
	subset=subset[0:200]
	features_x.add_subset(subset)
	dist=EuclideanDistance(features_x, features_x)
	distances=dist.get_distance_matrix()
	features_x.remove_subset()
	median_distance=Statistics.matrix_median(distances, True)
	sigma_x=median_distance**2
	features_y.add_subset(subset)
	dist=EuclideanDistance(features_y, features_y)
	distances=dist.get_distance_matrix()
	features_y.remove_subset()
	median_distance=Statistics.matrix_median(distances, True)
	sigma_y=median_distance**2
	print "median distance for Gaussian kernel on x:", sigma_x
	print "median distance for Gaussian kernel on y:", sigma_y
	kernel_x=GaussianKernel(10,sigma_x)
	kernel_y=GaussianKernel(10,sigma_y)

	hsic=HSIC(kernel_x,kernel_y,features_x,features_y)

	# perform test: compute p-value and test if null-hypothesis is rejected for
	# a test level of 0.05 using different methods to approximate
	# null-distribution
	statistic=hsic.compute_statistic()
	print "HSIC:", statistic
	alpha=0.05

	print "computing p-value using bootstrapping"
	hsic.set_null_approximation_method(BOOTSTRAP)
	# normally, at least 250 iterations should be done, but that takes long
	hsic.set_bootstrap_iterations(100)
	# bootstrapping allows usage of unbiased or biased statistic
	p_value=hsic.compute_p_value(statistic)
	thresh=hsic.compute_threshold(alpha)
	print "p_value:", p_value
	print "threshold for 0.05 alpha:", thresh
	print "p_value <", alpha, ", i.e. test sais p and q are dependend:", p_value<alpha

	print "computing p-value using gamma method"
	hsic.set_null_approximation_method(HSIC_GAMMA)
	p_value=hsic.compute_p_value(statistic)
	thresh=hsic.compute_threshold(alpha)
	print "p_value:", p_value
	print "threshold for 0.05 alpha:", thresh
	print "p_value <", alpha, ", i.e. test sais p and q are dependend::", p_value<alpha

	# sample from null distribution (these may be plotted or whatsoever)
	# mean should be close to zero, variance stronly depends on data/kernel
	# bootstrapping, biased statistic
	print "sampling null distribution using bootstrapping"
	hsic.set_null_approximation_method(BOOTSTRAP)
	hsic.set_bootstrap_iterations(100)
	null_samples=hsic.bootstrap_null()
	print "null mean:", mean(null_samples)
	print "null variance:", var(null_samples)
Esempio n. 4
0
def statistics_hsic (n, difference, angle):
	from shogun.Features import RealFeatures
	from shogun.Features import DataGenerator
	from shogun.Kernel import GaussianKernel
	from shogun.Statistics import HSIC
	from shogun.Statistics import BOOTSTRAP, HSIC_GAMMA
	from shogun.Distance import EuclideanDistance
	from shogun.Mathematics import Math, Statistics, IntVector
	
	# init seed for reproducability
	Math.init_random(1)

	# note that the HSIC has to store kernel matrices
	# which upper bounds the sample size

	# use data generator class to produce example data
	data=DataGenerator.generate_sym_mix_gauss(n,difference,angle)
	#plot(data[0], data[1], 'x');show()

	# create shogun feature representation
	features_x=RealFeatures(array([data[0]]))
	features_y=RealFeatures(array([data[1]]))

	# compute median data distance in order to use for Gaussian kernel width
	# 0.5*median_distance normally (factor two in Gaussian kernel)
	# However, shoguns kernel width is different to usual parametrization
	# Therefore 0.5*2*median_distance^2
	# Use a subset of data for that, only 200 elements. Median is stable
	subset=IntVector.randperm_vec(features_x.get_num_vectors())
	subset=subset[0:200]
	features_x.add_subset(subset)
	dist=EuclideanDistance(features_x, features_x)
	distances=dist.get_distance_matrix()
	features_x.remove_subset()
	median_distance=Statistics.matrix_median(distances, True)
	sigma_x=median_distance**2
	features_y.add_subset(subset)
	dist=EuclideanDistance(features_y, features_y)
	distances=dist.get_distance_matrix()
	features_y.remove_subset()
	median_distance=Statistics.matrix_median(distances, True)
	sigma_y=median_distance**2
	#print "median distance for Gaussian kernel on x:", sigma_x
	#print "median distance for Gaussian kernel on y:", sigma_y
	kernel_x=GaussianKernel(10,sigma_x)
	kernel_y=GaussianKernel(10,sigma_y)

	hsic=HSIC(kernel_x,kernel_y,features_x,features_y)

	# perform test: compute p-value and test if null-hypothesis is rejected for
	# a test level of 0.05 using different methods to approximate
	# null-distribution
	statistic=hsic.compute_statistic()
	#print "HSIC:", statistic
	alpha=0.05

	#print "computing p-value using bootstrapping"
	hsic.set_null_approximation_method(BOOTSTRAP)
	# normally, at least 250 iterations should be done, but that takes long
	hsic.set_bootstrap_iterations(100)
	# bootstrapping allows usage of unbiased or biased statistic
	p_value_boot=hsic.compute_p_value(statistic)
	thresh_boot=hsic.compute_threshold(alpha)
	#print "p_value:", p_value_boot
	#print "threshold for 0.05 alpha:", thresh_boot
	#print "p_value <", alpha, ", i.e. test sais p and q are dependend:", p_value_boot<alpha

	#print "computing p-value using gamma method"
	hsic.set_null_approximation_method(HSIC_GAMMA)
	p_value_gamma=hsic.compute_p_value(statistic)
	thresh_gamma=hsic.compute_threshold(alpha)
	#print "p_value:", p_value_gamma
	#print "threshold for 0.05 alpha:", thresh_gamma
	#print "p_value <", alpha, ", i.e. test sais p and q are dependend::", p_value_gamma<alpha

	# sample from null distribution (these may be plotted or whatsoever)
	# mean should be close to zero, variance stronly depends on data/kernel
	# bootstrapping, biased statistic
	#print "sampling null distribution using bootstrapping"
	hsic.set_null_approximation_method(BOOTSTRAP)
	hsic.set_bootstrap_iterations(100)
	null_samples=hsic.bootstrap_null()
	#print "null mean:", mean(null_samples)
	#print "null variance:", var(null_samples)
	#hist(null_samples, 100); show()
	
	return p_value_boot, thresh_boot, p_value_gamma, thresh_gamma, statistic, null_samples