def preprocessor_logplusone_modular(fm_train_real=traindat, fm_test_real=testdat, width=1.4, size_cache=10): from shogun.Kernel import Chi2Kernel from shogun.Features import RealFeatures from shogun.Preprocessor import LogPlusOne feats_train = RealFeatures(fm_train_real) feats_test = RealFeatures(fm_test_real) preproc = LogPlusOne() preproc.init(feats_train) feats_train.add_preprocessor(preproc) feats_train.apply_preprocessor() feats_test.add_preprocessor(preproc) feats_test.apply_preprocessor() kernel = Chi2Kernel(feats_train, feats_train, width, size_cache) km_train = kernel.get_kernel_matrix() kernel.init(feats_train, feats_test) km_test = kernel.get_kernel_matrix() return km_train, km_test, kernel
def preprocessor_logplusone_modular (fm_train_real=traindat,fm_test_real=testdat,width=1.4,size_cache=10): from shogun.Kernel import Chi2Kernel from shogun.Features import RealFeatures from shogun.Preprocessor import LogPlusOne feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) preproc=LogPlusOne() preproc.init(feats_train) feats_train.add_preprocessor(preproc) feats_train.apply_preprocessor() feats_test.add_preprocessor(preproc) feats_test.apply_preprocessor() kernel=Chi2Kernel(feats_train, feats_train, width, size_cache) km_train=kernel.get_kernel_matrix() kernel.init(feats_train, feats_test) km_test=kernel.get_kernel_matrix() return km_train,km_test,kernel
def serialization_complex_example(num=5, dist=1, dim=10, C=2.0, width=10): import os from numpy import concatenate, zeros, ones from numpy.random import randn, seed from shogun.Features import RealFeatures, MulticlassLabels from shogun.Classifier import GMNPSVM from shogun.Kernel import GaussianKernel from shogun.IO import SerializableHdf5File,SerializableAsciiFile, \ SerializableJsonFile,SerializableXmlFile,MSG_DEBUG from shogun.Preprocessor import NormOne, LogPlusOne seed(17) data = concatenate( (randn(dim, num), randn(dim, num) + dist, randn(dim, num) + 2 * dist, randn(dim, num) + 3 * dist), axis=1) lab = concatenate((zeros(num), ones(num), 2 * ones(num), 3 * ones(num))) feats = RealFeatures(data) #feats.io.set_loglevel(MSG_DEBUG) kernel = GaussianKernel(feats, feats, width) labels = MulticlassLabels(lab) svm = GMNPSVM(C, kernel, labels) feats.add_preprocessor(NormOne()) feats.add_preprocessor(LogPlusOne()) feats.set_preprocessed(1) svm.train(feats) #svm.print_serializable() fstream = SerializableHdf5File("blaah.h5", "w") status = svm.save_serializable(fstream) check_status(status, 'h5') fstream = SerializableAsciiFile("blaah.asc", "w") status = svm.save_serializable(fstream) check_status(status, 'asc') fstream = SerializableJsonFile("blaah.json", "w") status = svm.save_serializable(fstream) check_status(status, 'json') fstream = SerializableXmlFile("blaah.xml", "w") status = svm.save_serializable(fstream) check_status(status, 'xml') fstream = SerializableHdf5File("blaah.h5", "r") new_svm = GMNPSVM() status = new_svm.load_serializable(fstream) check_status(status, 'h5') new_svm.train() fstream = SerializableAsciiFile("blaah.asc", "r") new_svm = GMNPSVM() status = new_svm.load_serializable(fstream) check_status(status, 'asc') new_svm.train() fstream = SerializableJsonFile("blaah.json", "r") new_svm = GMNPSVM() status = new_svm.load_serializable(fstream) check_status(status, 'json') new_svm.train() fstream = SerializableXmlFile("blaah.xml", "r") new_svm = GMNPSVM() status = new_svm.load_serializable(fstream) check_status(status, 'xml') new_svm.train() os.unlink("blaah.h5") os.unlink("blaah.asc") os.unlink("blaah.json") os.unlink("blaah.xml") return svm, new_svm