Esempio n. 1
0
def distribution_linearhmm(fm_dna=traindna, order=3, gap=0, reverse=False):

    from shogun import StringWordFeatures, StringCharFeatures, DNA
    from shogun import LinearHMM

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_dna)
    feats = StringWordFeatures(charfeat.get_alphabet())
    feats.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    hmm = LinearHMM(feats)
    hmm.train()

    hmm.get_transition_probs()

    num_examples = feats.get_num_vectors()
    num_param = hmm.get_num_model_parameters()
    for i in range(num_examples):
        for j in range(num_param):
            hmm.get_log_derivative(j, i)

    out_likelihood = hmm.get_log_likelihood()
    out_sample = hmm.get_log_likelihood_sample()

    return hmm, out_likelihood, out_sample
Esempio n. 2
0
def distribution_hmm(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
	from shogun import StringWordFeatures, StringCharFeatures, CUBE
	from shogun import HMM, BW_NORMAL

	charfeat=StringCharFeatures(CUBE)
	charfeat.set_features(fm_cube)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=HMM(feats, N, M, pseudo)
	hmm.train()
	hmm.baum_welch_viterbi_train(BW_NORMAL)

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in range(num_examples):
		for j in range(num_param):
			hmm.get_log_derivative(j, i)

	best_path=0
	best_path_state=0
	for i in range(num_examples):
		best_path+=hmm.best_path(i)
		for j in range(N):
			best_path_state+=hmm.get_best_path_state(i, j)

	lik_example = hmm.get_log_likelihood()
	lik_sample = hmm.get_log_likelihood_sample()

	return lik_example, lik_sample, hmm
Esempio n. 3
0
def distribution_hmm(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
    from shogun import StringWordFeatures, StringCharFeatures, CUBE
    from shogun import HMM, BW_NORMAL

    charfeat = StringCharFeatures(CUBE)
    charfeat.set_features(fm_cube)
    feats = StringWordFeatures(charfeat.get_alphabet())
    feats.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    hmm = HMM(feats, N, M, pseudo)
    hmm.train()
    hmm.baum_welch_viterbi_train(BW_NORMAL)

    num_examples = feats.get_num_vectors()
    num_param = hmm.get_num_model_parameters()
    for i in range(num_examples):
        for j in range(num_param):
            hmm.get_log_derivative(j, i)

    best_path = 0
    best_path_state = 0
    for i in range(num_examples):
        best_path += hmm.best_path(i)
        for j in range(N):
            best_path_state += hmm.get_best_path_state(i, j)

    lik_example = hmm.get_log_likelihood()
    lik_sample = hmm.get_log_likelihood_sample()

    return lik_example, lik_sample, hmm
Esempio n. 4
0
def kernel_salzberg_word_string(fm_train_dna=traindat,
                                fm_test_dna=testdat,
                                label_train_dna=label_traindat,
                                order=3,
                                gap=0,
                                reverse=False):
    from shogun import StringCharFeatures, StringWordFeatures, DNA, BinaryLabels
    from shogun import SalzbergWordStringKernel
    from shogun import PluginEstimate

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    pie = PluginEstimate()
    labels = BinaryLabels(label_train_dna)
    pie.set_labels(labels)
    pie.set_features(feats_train)
    pie.train()

    kernel = SalzbergWordStringKernel(feats_train, feats_train, pie, labels)
    km_train = kernel.get_kernel_matrix()

    kernel.init(feats_train, feats_test)
    pie.set_features(feats_test)
    pie.apply().get_labels()
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
def kernel_histogram_word_string(fm_train_dna=traindat,
                                 fm_test_dna=testdat,
                                 label_train_dna=label_traindat,
                                 order=3,
                                 ppseudo_count=1,
                                 npseudo_count=1):

    from shogun import StringCharFeatures, StringWordFeatures, DNA, BinaryLabels
    from shogun import HistogramWordStringKernel, AvgDiagKernelNormalizer
    from shogun import PluginEstimate  #, MSG_DEBUG

    charfeat = StringCharFeatures(DNA)
    #charfeat.io.set_loglevel(MSG_DEBUG)
    charfeat.set_features(fm_train_dna)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, 0, False)

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_test_dna)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, 0, False)

    pie = PluginEstimate(ppseudo_count, npseudo_count)
    labels = BinaryLabels(label_train_dna)
    pie.set_labels(labels)
    pie.set_features(feats_train)
    pie.train()

    kernel = HistogramWordStringKernel(feats_train, feats_train, pie)
    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    pie.set_features(feats_test)
    pie.apply().get_labels()
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Esempio n. 6
0
def kernel_match_word_string(fm_train_dna=traindat,
                             fm_test_dna=testdat,
                             degree=3,
                             scale=1.4,
                             size_cache=10,
                             order=3,
                             gap=0,
                             reverse=False):
    from shogun import MatchWordStringKernel, AvgDiagKernelNormalizer
    from shogun import StringWordFeatures, StringCharFeatures, DNA

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(DNA)
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(DNA)
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    kernel = MatchWordStringKernel(size_cache, degree)
    kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
    kernel.init(feats_train, feats_train)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Esempio n. 7
0
    def init_sensor(self, kernel, svs):
        f = StringCharFeatures(svs, DNA)

        kname = kernel['name']
        if  kname == 'spectrum':
            wf = StringWordFeatures(f.get_alphabet())
            wf.obtain_from_char(f, kernel['order'] - 1, kernel['order'], 0, False)

            pre = SortWordString()
            pre.init(wf)
            wf.add_preprocessor(pre)
            wf.apply_preprocessor()
            f = wf

            k = CommWordStringKernel(0, False)
            k.set_use_dict_diagonal_optimization(kernel['order'] < 8)
            self.preproc = pre

        elif kname == 'wdshift':
                k = WeightedDegreePositionStringKernel(0, kernel['order'])
                k.set_normalizer(IdentityKernelNormalizer())
                k.set_shifts(kernel['shift'] *
                        numpy.ones(f.get_max_vector_length(), dtype=numpy.int32))
                k.set_position_weights(1.0 / f.get_max_vector_length() *
                        numpy.ones(f.get_max_vector_length(), dtype=numpy.float64))
        else:
            raise "Currently, only wdshift and spectrum kernels supported"

        self.kernel = k
        self.train_features = f

        return (self.kernel, self.train_features)
Esempio n. 8
0
def kernel_poly_match_word_string(fm_train_dna=traindat,
                                  fm_test_dna=testdat,
                                  degree=2,
                                  inhomogene=True,
                                  order=3,
                                  gap=0,
                                  reverse=False):
    from shogun import PolyMatchWordStringKernel
    from shogun import StringWordFeatures, StringCharFeatures, DNA

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(DNA)
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(DNA)
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    kernel = PolyMatchWordStringKernel(feats_train, feats_train, degree,
                                       inhomogene)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Esempio n. 9
0
    def get_test_features(self, seq, window):
        start = self.window[0] - window[0]
        end = len(seq) - window[1] + self.window[2]
        size = self.window[2] - self.window[0] + 1
        seq = seq[start:end]
        seq = seq.replace("N", "A").replace("R", "A").replace("M", "A")
        f = StringCharFeatures([seq], DNA)

        if self.preproc:
            wf = StringWordFeatures(f.get_alphabet())
            o = self.train_features.get_order()
            wf.obtain_from_char(f, 0, o, 0, False)
            f = wf
            f.obtain_by_sliding_window(size, 1, o - 1)
        else:
            f.obtain_by_sliding_window(size, 1)

        return f
def get_spectrum_features(data, order=3, gap=0, reverse=True):
    """
    create feature object used by spectrum kernel
    """

    charfeat = StringCharFeatures(data, DNA)
    feat = StringWordFeatures(charfeat.get_alphabet())
    feat.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feat)
    feat.add_preprocessor(preproc)
    feat.apply_preprocessor()

    return feat
Esempio n. 11
0
def distribution_histogram(fm_dna=traindna, order=3, gap=0, reverse=False):
    from shogun import StringWordFeatures, StringCharFeatures, DNA
    from shogun import Histogram

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_dna)
    feats = StringWordFeatures(charfeat.get_alphabet())
    feats.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    histo = Histogram(feats)
    histo.train()

    histo.get_histogram()

    num_examples = feats.get_num_vectors()
    num_param = histo.get_num_model_parameters()
    #for i in xrange(num_examples):
    #	for j in xrange(num_param):
    #		histo.get_log_derivative(j, i)

    out_likelihood = histo.get_log_likelihood()
    out_sample = histo.get_log_likelihood_sample()
    return histo, out_sample, out_likelihood
Esempio n. 12
0
def features_string_word(strings, start, order, gap, rev):
    from shogun import StringCharFeatures, StringWordFeatures, RAWBYTE
    from numpy import array, uint16

    #create string features
    cf = StringCharFeatures(strings, RAWBYTE)
    wf = StringWordFeatures(RAWBYTE)

    wf.obtain_from_char(cf, start, order, gap, rev)

    #and output several stats
    #print("max string length", wf.get_max_vector_length())
    #print("number of strings", wf.get_num_vectors())
    #print("length of first string", wf.get_vector_length(0))
    #print("string[2]", wf.get_feature_vector(2))
    #print("strings", wf.get_features())

    #replace string 0
    wf.set_feature_vector(array([1, 2, 3, 4, 5], dtype=uint16), 0)

    #print("strings", wf.get_features())
    return wf.get_features(), wf
Esempio n. 13
0
def kernel_top(fm_train_dna=traindat,
               fm_test_dna=testdat,
               label_train_dna=label_traindat,
               pseudo=1e-1,
               order=1,
               gap=0,
               reverse=False,
               kargs=[1, False, True]):
    from shogun import StringCharFeatures, StringWordFeatures, TOPFeatures, DNA
    from shogun import PolyKernel
    from shogun import HMM, BW_NORMAL

    N = 1  # toy HMM with 1 state
    M = 4  # 4 observations -> DNA

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = TOPFeatures(10, pos, neg, False, False)
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = TOPFeatures(10, pos_clone, neg_clone, False, False)
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
def preprocessor_sortwordstring(fm_train_dna=traindna,
                                fm_test_dna=testdna,
                                order=3,
                                gap=0,
                                reverse=False,
                                use_sign=False):

    from shogun import CommWordStringKernel
    from shogun import StringCharFeatures, StringWordFeatures, DNA
    from shogun import SortWordString

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preprocessor(preproc)
    feats_train.apply_preprocessor()

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    feats_test.add_preprocessor(preproc)
    feats_test.apply_preprocessor()

    kernel = CommWordStringKernel(feats_train, feats_train, use_sign)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()

    return km_train, km_test, kernel
Esempio n. 15
0
def distance_manhattenword(train_fname=traindna,
                           test_fname=testdna,
                           order=3,
                           gap=0,
                           reverse=False):
    from shogun import StringCharFeatures, StringWordFeatures, DNA
    from shogun import SortWordString, ManhattanWordDistance, CSVFile

    charfeat = StringCharFeatures(CSVFile(train_fname), DNA)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preprocessor(preproc)
    feats_train.apply_preprocessor()

    charfeat = StringCharFeatures(CSVFile(test_fname), DNA)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    feats_test.add_preprocessor(preproc)
    feats_test.apply_preprocessor()

    distance = ManhattanWordDistance(feats_train, feats_train)

    dm_train = distance.get_distance_matrix()
    distance.init(feats_train, feats_test)
    dm_test = distance.get_distance_matrix()
    return dm_train, dm_test
Esempio n. 16
0
def create_features(kname, examples, kparam, train_mode, preproc, seq_source,
                    nuc_con):
    """Converts numpy arrays or sequences into shogun features"""

    if kname == 'gauss' or kname == 'linear' or kname == 'poly':
        examples = numpy.array(examples)
        feats = RealFeatures(examples)

    elif kname == 'wd' or kname == 'localalign' or kname == 'localimprove':
        if seq_source == 'dna':
            examples = non_atcg_convert(examples, nuc_con)
            feats = StringCharFeatures(examples, DNA)
        elif seq_source == 'protein':
            examples = non_aminoacid_converter(examples, nuc_con)
            feats = StringCharFeatures(examples, PROTEIN)
        else:
            sys.stderr.write("Sequence source -" + seq_source +
                             "- is invalid. select [dna|protein]\n")
            sys.exit(-1)

    elif kname == 'spec' or kname == 'cumspec':
        if seq_source == 'dna':
            examples = non_atcg_convert(examples, nuc_con)
            feats = StringCharFeatures(examples, DNA)
        elif seq_source == 'protein':
            examples = non_aminoacid_converter(examples, nuc_con)
            feats = StringCharFeatures(examples, PROTEIN)
        else:
            sys.stderr.write("Sequence source -" + seq_source +
                             "- is invalid. select [dna|protein]\n")
            sys.exit(-1)

        wf = StringUlongFeatures(feats.get_alphabet())
        wf.obtain_from_char(feats, kparam['degree'] - 1, kparam['degree'], 0,
                            kname == 'cumspec')
        del feats

        if train_mode:
            preproc = SortUlongString()
            preproc.init(wf)
        wf.add_preprocessor(preproc)
        ret = wf.apply_preprocessor()
        #assert(ret)

        feats = wf
    elif kname == 'spec2' or kname == 'cumspec2':
        # spectrum kernel on two sequences
        feats = {}
        feats['combined'] = CombinedFeatures()

        reversed = kname == 'cumspec2'

        (ex0, ex1) = zip(*examples)

        f0 = StringCharFeatures(list(ex0), DNA)
        wf = StringWordFeatures(f0.get_alphabet())
        wf.obtain_from_char(f0, kparam['degree'] - 1, kparam['degree'], 0,
                            reversed)
        del f0

        if train_mode:
            preproc = SortWordString()
            preproc.init(wf)
        wf.add_preprocessor(preproc)
        ret = wf.apply_preprocessor()
        assert (ret)
        feats['combined'].append_feature_obj(wf)
        feats['f0'] = wf

        f1 = StringCharFeatures(list(ex1), DNA)
        wf = StringWordFeatures(f1.get_alphabet())
        wf.obtain_from_char(f1, kparam['degree'] - 1, kparam['degree'], 0,
                            reversed)
        del f1

        if train_mode:
            preproc = SortWordString()
            preproc.init(wf)
        wf.add_preprocessor(preproc)
        ret = wf.apply_preprocessor()
        assert (ret)
        feats['combined'].append_feature_obj(wf)
        feats['f1'] = wf

    else:
        print 'Unknown kernel %s' % kname

    return (feats, preproc)
Esempio n. 17
0
def tests_check_commwordkernel_memleak(num, order, gap, reverse):
    import gc
    from shogun import Alphabet, StringCharFeatures, StringWordFeatures, DNA
    from shogun import SortWordString, MSG_DEBUG
    from shogun import CommWordStringKernel, IdentityKernelNormalizer
    from numpy import mat

    POS = [
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT'
    ]
    NEG = [
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT'
    ]

    for i in range(10):
        alpha = Alphabet(DNA)
        traindat = StringCharFeatures(alpha)
        traindat.set_features(POS + NEG)
        trainudat = StringWordFeatures(traindat.get_alphabet())
        trainudat.obtain_from_char(traindat, order - 1, order, gap, reverse)
        #trainudat.io.set_loglevel(MSG_DEBUG)
        pre = SortWordString()
        #pre.io.set_loglevel(MSG_DEBUG)
        pre.init(trainudat)
        trainudat.add_preprocessor(pre)
        trainudat.apply_preprocessor()
        spec = CommWordStringKernel(10, False)
        spec.set_normalizer(IdentityKernelNormalizer())
        spec.init(trainudat, trainudat)
        K = spec.get_kernel_matrix()

    del POS
    del NEG
    del order
    del gap
    del reverse
    return K
Esempio n. 18
0
def distance_hammingword (fm_train_dna=traindna,fm_test_dna=testdna,
		fm_test_real=testdat,order=3,gap=0,reverse=False,use_sign=False):

	from shogun import StringCharFeatures, StringWordFeatures, DNA
	from shogun import SortWordString
	from shogun import HammingWordDistance

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	distance=HammingWordDistance(feats_train, feats_train, use_sign)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
	return distance,dm_train,dm_test
Esempio n. 19
0
def kernel_fisher (fm_train_dna=traindat, fm_test_dna=testdat,
		label_train_dna=label_traindat,
		N=1,M=4,pseudo=1e-1,order=1,gap=0,reverse=False,
		kargs=[1,False,True]):

	from shogun import StringCharFeatures, StringWordFeatures, FKFeatures, DNA
	from shogun import PolyKernel
	from shogun import HMM, BW_NORMAL#, MSG_DEBUG

	# train HMM for positive class
	charfeat=StringCharFeatures(fm_hmm_pos, DNA)
	#charfeat.io.set_loglevel(MSG_DEBUG)
	hmm_pos_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_pos_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	pos=HMM(hmm_pos_train, N, M, pseudo)
	pos.baum_welch_viterbi_train(BW_NORMAL)

	# train HMM for negative class
	charfeat=StringCharFeatures(fm_hmm_neg, DNA)
	hmm_neg_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_neg_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	neg=HMM(hmm_neg_train, N, M, pseudo)
	neg.baum_welch_viterbi_train(BW_NORMAL)

	# Kernel training data
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	wordfeats_train=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# Kernel testing data
	charfeat=StringCharFeatures(fm_test_dna, DNA)
	wordfeats_test=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# get kernel on training data
	pos.set_observations(wordfeats_train)
	neg.set_observations(wordfeats_train)
	feats_train=FKFeatures(10, pos, neg)
	feats_train.set_opt_a(-1) #estimate prior
	kernel=PolyKernel(feats_train, feats_train, *kargs)
	km_train=kernel.get_kernel_matrix()

	# get kernel on testing data
	pos_clone=HMM(pos)
	neg_clone=HMM(neg)
	pos_clone.set_observations(wordfeats_test)
	neg_clone.set_observations(wordfeats_test)
	feats_test=FKFeatures(10, pos_clone, neg_clone)
	feats_test.set_a(feats_train.get_a()) #use prior from training data
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
Esempio n. 20
0
def runShogunSVMDNASpectrumKernel(train_xt, train_lt, test_xt):
	"""
	run svm with spectrum kernel
	"""

    ##################################################
    # set up SVM
	charfeat_train = StringCharFeatures(train_xt, DNA)
	feats_train = StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()
	
	charfeat_test = StringCharFeatures(test_xt, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()
	
	kernel=CommWordStringKernel(feats_train, feats_train, False)
	kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
	labels = BinaryLabels(train_lt)
	
	# run svm model
	print "Ready to train!"
	svm=LibSVM(SVMC, kernel, labels)
	svm.io.set_loglevel(MSG_DEBUG)
	svm.train()

	# predictions
	print "Making predictions!"
	out1DecisionValues = svm.apply(feats_train)
	out1=out1DecisionValues.get_labels()
	kernel.init(feats_train, feats_test)
	out2DecisionValues = svm.apply(feats_test)
	out2=out2DecisionValues.get_labels()

	return out1,out2,out1DecisionValues,out2DecisionValues