Esempio n. 1
0
    def get_simulator(self):
        """
        Return a DefaultSimulator based on `cfg`.

        Returns
        -------
        DefaultSimulator instance
        """
        # Read region, model and datasets config files
        region_config_file = os.path.join(self.config_dir,
                                          self.region_config_file)
        region_config = yaml_config.RegionConfig(region_config_file)
        model_config_file = os.path.join(self.config_dir,
                                         self.model_config_file)
        model_config = yaml_config.ModelConfig(model_config_file)
        datasets_config_file = os.path.join(self.config_dir,
                                            self.datasets_config_file)
        datasets_config = yaml_config.YamlContent(datasets_config_file)

        # Build some interesting constructs
        region_model = RegionModelRepository(region_config, model_config,
                                             self.model_t, self.epsg)
        interp_repos = InterpolationParameterRepository(model_config)
        geo_ts = get_geo_ts_collection(datasets_config, self.data_dir)

        # If region and interpolation ids are not present, just use fake ones
        region_id = 0 if not hasattr(self, "region_id") else int(
            self.region_id)
        interpolation_id = 0 if not hasattr(self, "interpolation_id") \
                           else int(self.interpolation_id)
        # set up the simulator
        simulator = DefaultSimulator(region_id, interpolation_id, region_model,
                                     geo_ts, interp_repos, None)
        return simulator
Esempio n. 2
0
    def test_compute_lwc_percentiles(self):
        # Simulation time axis
        year, month, day, hour = 2010, 9, 1, 0
        dt = api.deltahours(24)
        n_steps = 400
        utc = api.Calendar()  # No offset gives Utc
        t0 = utc.time(api.YMDhms(year, month, day, hour))
        time_axis = api.Timeaxis(t0, dt, n_steps)

        # Some fake ids
        region_id = 0
        interpolation_id = 0

        # Simulation coordinate system
        epsg = "32633"

        # Model
        model_t = pt_gs_k.PTGSKModel

        # Configs and repositories
        dataset_config_file = path.join(path.dirname(__file__), "netcdf",
                                        "atnsjoen_datasets.yaml")
        region_config_file = path.join(path.dirname(__file__), "netcdf",
                                       "atnsjoen_calibration_region.yaml")
        region_config = RegionConfig(region_config_file)
        model_config = ModelConfig(self.model_config_file)
        dataset_config = YamlContent(dataset_config_file)
        region_model_repository = RegionModelRepository(
            region_config, model_config, model_t, epsg)
        interp_repos = InterpolationParameterRepository(model_config)
        netcdf_geo_ts_repos = []
        for source in dataset_config.sources:
            station_file = source["params"]["stations_met"]
            netcdf_geo_ts_repos.append(
                GeoTsRepository(source["params"], station_file, ""))
        geo_ts_repository = GeoTsRepositoryCollection(netcdf_geo_ts_repos)

        # Construct target discharge series
        simulator = DefaultSimulator(region_id, interpolation_id,
                                     region_model_repository,
                                     geo_ts_repository, interp_repos, None)
        n_cells = simulator.region_model.size()
        state_repos = DefaultStateRepository(model_t, n_cells)
        cid = 1
        simulator.region_model.set_state_collection(cid, True)
        simulator.run(time_axis, state_repos.get_state(0))

        percentile_list = [10, 25, 50, 75, 90]
        # From here, things could be calculated without copies (except for 't')
        # TODO: Graham optimize with numba :-)
        cells = simulator.region_model.get_cells()
        lwcs = [np.array(cell.sc.gs_lwc.v) for cell in cells]  # Contiguous
        t = np.array([
            cells[0].sc.gs_lwc.time(i)
            for i in range(cells[0].sc.gs_lwc.size())
        ])
        percentiles = np.percentile(np.array(lwcs), percentile_list, 0)
Esempio n. 3
0
    def test_compute_lwc_percentiles(self):
        # Simulation time axis
        year, month, day, hour = 2010, 9, 1, 0
        dt = api.deltahours(24)
        n_steps = 400
        utc = api.Calendar()  # No offset gives Utc
        t0 = utc.time(year, month, day, hour)
        time_axis = api.TimeAxisFixedDeltaT(t0, dt, n_steps)

        # Some fake ids
        region_id = 0
        interpolation_id = 0

        # Simulation coordinate system
        epsg = "32633"

        # Model
        model_t = pt_gs_k.PTGSKModel

        # Configs and repositories
        dataset_config_file = path.join(path.dirname(__file__), "netcdf",
                                        "atnsjoen_datasets.yaml")
        region_config_file = path.join(path.dirname(__file__), "netcdf",
                                       "atnsjoen_calibration_region.yaml")
        region_config = RegionConfig(region_config_file)
        model_config = ModelConfig(self.model_config_file)
        dataset_config = YamlContent(dataset_config_file)
        region_model_repository = RegionModelRepository(
            region_config, model_config, model_t, epsg)
        interp_repos = InterpolationParameterRepository(model_config)
        netcdf_geo_ts_repos = []
        for source in dataset_config.sources:
            station_file = source["params"]["stations_met"]
            netcdf_geo_ts_repos.append(
                GeoTsRepository(source["params"], station_file, ""))
        geo_ts_repository = GeoTsRepositoryCollection(netcdf_geo_ts_repos)

        # Construct target discharge series
        simulator = DefaultSimulator(region_id, interpolation_id,
                                     region_model_repository,
                                     geo_ts_repository, interp_repos, None)
        n_cells = simulator.region_model.size()
        state_repos = DefaultStateRepository(model_t, n_cells)
        cid = 1
        simulator.region_model.set_state_collection(cid, True)
        simulator.run(time_axis, state_repos.get_state(0))
        self.assertAlmostEqual(
            simulator.region_model.cells[0].rc.pe_output.values[0],
            0.039768354, 5)  # just to verify pot.evap by regression, mm/h

        percentile_list = [10, 25, 50, 75, 90]
Esempio n. 4
0
    def test_run_arome_ensemble(self):
        # Simulation time axis
        year, month, day, hour = 2015, 7, 26, 0
        n_hours = 30
        dt = api.deltahours(1)
        utc = api.Calendar()  # No offset gives Utc
        t0 = utc.time(api.YMDhms(year, month, day, hour))
        time_axis = api.Timeaxis(t0, dt, n_hours)

        # Some dummy ids not needed for the netcdf based repositories
        region_id = 0
        interpolation_id = 0

        # Simulation coordinate system
        epsg = "32633"

        # Model
        model_t = pt_gs_k.PTGSKOptModel

        # Configs and repositories
        region_config = RegionConfig(self.region_config_file)
        model_config = ModelConfig(self.model_config_file)
        region_model_repository = RegionModelRepository(
            region_config, model_config, model_t, epsg)
        interp_repos = InterpolationParameterRepository(model_config)
        base_dir = path.join(shyftdata_dir, "netcdf", "arome")
        pattern = "fc*.nc"
        try:
            geo_ts_repository = AromeDataRepository(epsg,
                                                    base_dir,
                                                    filename=pattern,
                                                    allow_subset=True)
        except Exception as e:
            print("**** test_run_arome_ensemble: Arome data missing or"
                  " wrong, test inconclusive ****")
            print("****{}****".format(e))
            self.skipTest(
                "**** test_run_arome_ensemble: Arome data missing or wrong, test "
                "inconclusive ****\n\t exception:{}".format(e))
        simulator = DefaultSimulator(region_id, interpolation_id,
                                     region_model_repository,
                                     geo_ts_repository, interp_repos, None)
        n_cells = simulator.region_model.size()
        state_repos = DefaultStateRepository(model_t, n_cells)
        simulators = simulator.create_ensembles(time_axis, t0,
                                                state_repos.get_state(0))
        for s in simulators:
            s.simulate()
Esempio n. 5
0
    def run_simulator(self, model_t):
        # Simulation time axis
        dt0 = api.YMDhms(2015, 8, 24, 6)
        n_hours = 30
        dt = api.deltahours(1)
        utc = api.Calendar()  # No offset gives Utc
        t0 = utc.time(dt0)
        time_axis = api.Timeaxis(t0, dt, n_hours)

        # Some dummy ids not needed for the netcdf based repositories
        region_id = 0
        interpolation_id = 0

        # Simulation coordinate system
        epsg = "32633"

        # Configs and repositories
        region_config = RegionConfig(self.region_config_file)
        model_config = ModelConfig(self.model_config_file)
        region_model_repository = RegionModelRepository(
            region_config, model_config, model_t, epsg)
        interp_repos = InterpolationParameterRepository(model_config)
        date_str = "{}{:02}{:02}_{:02}".format(dt0.year, dt0.month, dt0.day,
                                               dt0.hour)
        base_dir = path.join(shyftdata_dir, "repository",
                             "arome_data_repository")
        f1 = "arome_metcoop_red_default2_5km_{}.nc".format(date_str)
        f2 = "arome_metcoop_red_test2_5km_{}.nc".format(date_str)

        ar1 = AromeDataRepository(epsg,
                                  base_dir,
                                  filename=f1,
                                  allow_subset=True)
        ar2 = AromeDataRepository(epsg,
                                  base_dir,
                                  filename=f2,
                                  elevation_file=f1,
                                  allow_subset=True)

        geo_ts_repository = GeoTsRepositoryCollection([ar1, ar2])

        simulator = DefaultSimulator(region_id, interpolation_id,
                                     region_model_repository,
                                     geo_ts_repository, interp_repos, None)
        n_cells = simulator.region_model.size()
        state_repos = DefaultStateRepository(model_t, n_cells)
        simulator.run(time_axis, state_repos.get_state(0))
Esempio n. 6
0
    def test_snow_and_ground_water_response_calibration(self):
        """
        Test dual calibration strategy:
            * First fit the three Kirchner parameters for
              ground water response during July, August, and
              September.
            * Then fit two snow routine parameters (tx and max_water)
              from November to April.
        """
        # Simulation time axis
        year, month, day, hour = 2010, 9, 1, 0
        dt = api.deltahours(24)
        n_steps = 400
        utc = api.Calendar()  # No offset gives Utc
        t0 = utc.time(api.YMDhms(year, month, day, hour))
        time_axis = api.Timeaxis(t0, dt, n_steps)

        # Some fake ids
        region_id = 0
        interpolation_id = 0

        # Simulation coordinate system
        epsg = "32633"

        # Model
        model_t = pt_gs_k.PTGSKOptModel

        # Configs and repositories
        dataset_config_file = path.join(path.dirname(__file__), "netcdf",
                                        "atnsjoen_datasets.yaml")
        region_config_file = path.join(path.dirname(__file__), "netcdf",
                                       "atnsjoen_calibration_region.yaml")
        region_config = RegionConfig(region_config_file)
        model_config = ModelConfig(self.model_config_file)
        dataset_config = YamlContent(dataset_config_file)
        region_model_repository = RegionModelRepository(
            region_config, model_config, model_t, epsg)
        interp_repos = InterpolationParameterRepository(model_config)
        netcdf_geo_ts_repos = []
        for source in dataset_config.sources:
            station_file = source["params"]["stations_met"]
            netcdf_geo_ts_repos.append(
                GeoTsRepository(source["params"], station_file, ""))
        geo_ts_repository = GeoTsRepositoryCollection(netcdf_geo_ts_repos)

        # Construct target discharge series
        simulator = DefaultSimulator(region_id, interpolation_id,
                                     region_model_repository,
                                     geo_ts_repository, interp_repos, None)
        n_cells = simulator.region_model.size()
        state_repos = DefaultStateRepository(model_t, n_cells)
        simulator.run(time_axis, state_repos.get_state(0))
        cid = 1
        target_discharge = simulator.region_model.statistics.discharge([cid])

        # Construct kirchner parameters
        param = simulator.region_model.parameter_t(
            simulator.region_model.get_region_parameter())
        print_param("True solution", param)

        kirchner_param_min = simulator.region_model.parameter_t(param)
        kirchner_param_max = simulator.region_model.parameter_t(param)
        # Kichner parameters are quite abstract (no physical meaning), so simply scale them
        kirchner_param_min.kirchner.c1 *= 0.8
        kirchner_param_min.kirchner.c2 *= 0.8
        kirchner_param_min.kirchner.c3 *= 0.8
        kirchner_param_max.kirchner.c1 *= 1.2
        kirchner_param_max.kirchner.c2 *= 1.2
        kirchner_param_max.kirchner.c3 *= 1.2
        # kirchner_t_start = utc.time(api.YMDhms(2011, 4, 1, 0))
        # kirchner_time_axis = api.Timeaxis(kirchner_t_start, dt, 150)
        kirchner_time_axis = time_axis

        # Construct gamma snow parameters (realistic tx and max_lwc)
        gamma_snow_param_min = simulator.region_model.parameter_t(param)
        gamma_snow_param_max = simulator.region_model.parameter_t(param)
        gamma_snow_param_min.gs.tx = -1.0  # Min snow/rain temperature threshold
        gamma_snow_param_min.gs.max_water = 0.05  # Min 8% max water in snow in costal regions
        gamma_snow_param_max.gs.tx = 1.0
        gamma_snow_param_max.gs.max_water = 0.25  # Max 35% max water content, or we get too little melt
        gs_t_start = utc.time(api.YMDhms(2010, 11, 1, 0))
        gs_time_axis = api.Timeaxis(gs_t_start, dt, 250)
        # gs_time_axis = time_axis

        # Find parameters
        target_spec = api.TargetSpecificationPts(target_discharge,
                                                 api.IntVector([cid]), 1.0,
                                                 api.KLING_GUPTA)
        target_spec_vec = api.TargetSpecificationVector(
        )  # TODO: We currently dont fix list initializer for vectors
        target_spec_vec.append(target_spec)
        # Construct a fake, perturbed starting point for calibration
        p_vec = [param.get(i) for i in range(param.size())]
        for i, name in enumerate(
            [param.get_name(i) for i in range(len(p_vec))]):
            if name not in ("c1" "c2", "c3", "TX", "max_water"):
                next
            if name in ("c1", "c2", "c3"):
                p_vec[i] = random.uniform(0.8 * p_vec[i], 1.2 * p_vec[i])
            elif name == "TX":
                p_vec[i] = random.uniform(gamma_snow_param_min.gs.tx,
                                          gamma_snow_param_max.gs.tx)
            elif name == "max_water":
                p_vec[i] = random.uniform(gamma_snow_param_min.gs.max_water,
                                          gamma_snow_param_max.gs.max_water)
        param.set(p_vec)
        print_param("Initial guess", param)
        # Two pass optimization, once for the ground water response, and second time for
        kirchner_p_opt = simulator.optimize(kirchner_time_axis,
                                            state_repos.get_state(0),
                                            target_spec_vec, param,
                                            kirchner_param_min,
                                            kirchner_param_max)
        gamma_snow_p_opt = simulator.optimize(gs_time_axis,
                                              state_repos.get_state(0),
                                              target_spec_vec, kirchner_p_opt,
                                              gamma_snow_param_min,
                                              gamma_snow_param_max)
        print_param("Half way result", kirchner_p_opt)
        print_param("Result", gamma_snow_p_opt)

        simulator.region_model.set_catchment_parameter(cid, gamma_snow_p_opt)
        simulator.run(time_axis, state_repos.get_state(0))
        found_discharge = simulator.region_model.statistics.discharge([cid])

        t_vs = np.array(target_discharge.v)
        t_ts = np.array(
            [target_discharge.time(i) for i in range(target_discharge.size())])
        f_vs = np.array(found_discharge.v)
        f_ts = np.array(
            [found_discharge.time(i) for i in range(found_discharge.size())])