Esempio n. 1
0
def naget():
    natype = request.args.get('natype')
    message = {}
    try:
        start_val, start_unit = si_format(float(NA[natype].linfreq(
            nabench[natype])[1]['START']),
                                          precision=1).split(" ")
        stop_val, stop_unit = si_format(float(NA[natype].linfreq(
            nabench[natype])[1]['STOP']),
                                        precision=1).split(" ")
        stop_conversion = si_parse("1%s" % stop_unit) / si_parse(
            "1%s" % start_unit)  # equalizing both unit-range:
        message['start-frequency'] = "%s %sHz" % (start_val, start_unit
                                                  )  # start-frequency
        message['stop-frequency'] = "%s %sHz" % (
            float(stop_val) * stop_conversion, start_unit)  # stop-frequency
        message['step-points'] = int(NA[natype].sweep(
            nabench[natype])[1]['POINTS']) - 1  # step-points in waveform
        message['power'] = "%.1f dBm" % float(NA[natype].power(
            nabench[natype])[1]['LEVEL'])  # power (fixed unit)
        message['ifb'] = si_format(
            float(NA[natype].ifbw(nabench[natype])[1]['BANDWIDTH']),
            precision=0) + "Hz"  # ifb (adjusted by si_prefix)
        message['s21'] = int('S21' in NA[natype].getrace(nabench[natype]))
    except:
        # raise
        message = dict(status='%s is not connected' % natype)
    return jsonify(message=message)
Esempio n. 2
0
def nasetfreqrange():
	natype = request.args.get('natype')
	freqrange = waveform(request.args.get('freqrange'))
	frequnit = request.args.get('frequnit').replace("Hz","")
	NA[natype].sweep(nabench[natype], action=['Set', 'ON', freqrange.count])
	fstart, fstop = si_parse(str(freqrange.data[0])+frequnit), si_parse(str(freqrange.data[-1])+frequnit)
	NA[natype].sweep(nabench[natype], action=['Set', 'ON', freqrange.count])
	NA[natype].linfreq(nabench[natype], action=['Set', fstart, fstop])
	message = 'frequency: %s to %s' %(fstart, fstop)
	return jsonify(message=message)
Esempio n. 3
0
 def resistance(self, r):
     if type(r) is str:
         self._resistance = si_parse(r)
     else:
         if r < 0:
             raise ValueError('Invalid value provided for resistance')
         self._resistance = r
Esempio n. 4
0
def unit_converter(unit_added_string: str) -> float:
    """
        convert unit formatted strings to floating numbers without any units

        Arguments:
            :param unit_added_string: the unit added number we want to convert to be unit free

        Returns::
            :return unit_in_float: the same number but in float without the units

        Raises::
            :raise TypeError: if trying to parse an unknown unit type
            """
    custom_unit_ratio = {
        "Ki": 1024,
        "Mi": 1024 * 1024,
        "Gi": 1024 * 1024 * 1024
    }
    try:
        unit_in_float = float(si_parse(unit_added_string))
    except AttributeError:
        if unit_added_string[-2:] in custom_unit_ratio:
            unit_in_float = float(unit_added_string[:-2]) * custom_unit_ratio[unit_added_string[-2:]]
        else:
            raise TypeError

    return unit_in_float
Esempio n. 5
0
def nasetifb():
	natype = request.args.get('natype')
	ifb = request.args.get('ifb')
	ifbunit = request.args.get('ifbunit').replace("Hz","")
	stat = NA[natype].ifbw(nabench[natype], action=['Set', si_parse(ifb + ifbunit)])
	message = 'ifb: %s <%s>' %(stat[1], stat[0])
	return jsonify(message=message)
Esempio n. 6
0
 async def change_frequency(self, frequency, params):
     try:
         print("FREQ", frequency)
         frequency = si_parse(_.replace(frequency, "Hz", ""))
         await self.put_frequency({"frequency": frequency}, params)
         await self.update_board_info()
     except Exception as e:
         print("Error setting frequency")
         print(e)
Esempio n. 7
0
 async def change_voltage(self, voltage, params):
     try:
         print("CHANGING :) VOLTAGE!!!")
         # Convert payload from si_unit string to number
         print("CALLING PSI PARSE:", voltage)
         voltage = si_parse(_.replace(voltage, "V", ""))
         print("ITS NOW: ", voltage)
         await self.put_voltage({"voltage": voltage}, {})
         await self.update_board_info()
     except Exception as e:
         print("Error setting voltage")
         print(e)
Esempio n. 8
0
def get_alloc_sizes(objdata):
    sizes = []
    with open(objdata, 'r') as f:
        for line in f:
            line = line.strip()
            if line.startswith('<'):
                continue

            fields = re.split(' *\( *| *\) *| +', line)
            sz_w_sfx = fields[2] + fields[3]
            size = si_parse(sz_w_sfx[0:-1])
            sizes.append(size)
    return sizes
Esempio n. 9
0
def on_edited_dataframe_sync(cell_renderer, itr, new_value, column,
                             df_py_dtypes, list_store, df_data):
    """
    Handle the `'edited'` signal from a `Gtk.CellRenderer` to:

     * Update the corresponding entry in the list store.
     * Update the corresponding entry in the provided data frame instance.

    The callback can be connected to the cell renderer as follows:

        cell_renderer.connect('edited', on_edited_dataframe_sync, column,
                              list_store, df_py_dtypes, df_data)

    where `column` is the `Gtk.TreeViewColumn` the cell renderer belongs to,
    and `df_py_dtypes` and `list_store` are the return values from calling
    `get_list_store` on the `df_data` data frame.

    Args:

        cell_renderer (Gtk.CellRenderer)
        iter (str) : Gtk TreeView iterator
        new_value (str) : New value resulting from edit operation.
        column (Gtk.TreeViewColumn) : Column containing edited cell.
        df_py_dtypes (pandas.DataFrame) : Data frame containing type
            information for columns in tree view (and `list_store`).
        list_store (Gtk.ListStore) : Model containing data bound to tree view.
        df_data (pandas.DataFrame) : Data frame containing data in `list_store`.

    Returns:

        None
    """
    # Extract name of column (name of TreeView column must match data frame
    # column name).
    column_name = column.get_name()
    # Look up the list store column index and data type for column.
    i, dtype = df_py_dtypes.ix[column_name]
    # Update the list store with the new value.
    if dtype == float:
        value = si_parse(new_value)
    elif dtype == bool:
        value = not list_store[itr][i]

    if value == list_store[itr][i]:
        # Value has not changed.
        return False
    list_store[itr][i] = value
    # Update the data frame with the new value.
    df_data[column_name].values[int(itr)] = value
    return True
def on_edited_dataframe_sync(cell_renderer, iter, new_value, column,
                             df_py_dtypes, list_store, df_data):
    '''
    Handle the `'edited'` signal from a `gtk.CellRenderer` to:

     * Update the corresponding entry in the list store.
     * Update the corresponding entry in the provided data frame instance.

    The callback can be connected to the cell renderer as follows:

        cell_renderer.connect('edited', on_edited_dataframe_sync, column,
                              list_store, df_py_dtypes, df_data)

    where `column` is the `gtk.TreeViewColumn` the cell renderer belongs to,
    and `df_py_dtypes` and `list_store` are the return values from calling
    `get_list_store` on the `df_data` data frame.

    Args:

        cell_renderer (gtk.CellRenderer)
        iter (str) : Gtk TreeView iterator
        new_value (str) : New value resulting from edit operation.
        column (gtk.TreeViewColumn) : Column containing edited cell.
        df_py_dtypes (pandas.DataFrame) : Data frame containing type
            information for columns in tree view (and `list_store`).
        list_store (gtk.ListStore) : Model containing data bound to tree view.
        df_data (pandas.DataFrame) : Data frame containing data in `list_store`.

    Returns:

        None
    '''
    # Extract name of column (name of TreeView column must match data frame
    # column name).
    column_name = column.get_name()
    # Look up the list store column index and data type for column.
    i, dtype = df_py_dtypes.ix[column_name]
    # Update the list store with the new value.
    if dtype == float:
        value = si_parse(new_value)
    elif dtype == bool:
        value = not list_store[iter][i]

    if value == list_store[iter][i]:
        # Value has not changed.
        return False
    list_store[iter][i] = value
    # Update the data frame with the new value.
    df_data[column_name].values[int(iter)] = value
    return True
Esempio n. 11
0
    def process_query(self, query):

        # Try to infer and convert numerical shorthands to machine understandable format, e.g. 100M = 100*1,000,000
        parsed_tokens = []
        for token in word_tokenize(query):
            try:
                parsed_tokens.append(str(int(si_parse(token))))
            except Exception as e:
                parsed_tokens.append(token)

        # Convert to lowercase
        query_lower = ' '.join(parsed_tokens).lower()

        return query_lower
Esempio n. 12
0
    def process_query(self, query):

        # Try to infer and convert numerical shorthands to machine understandable format, e.g. 100M = 100*1,000,000
        parsed_tokens = []
        for token in word_tokenize(query):
            try:
                parsed_tokens.append(str(int(si_parse(token))))
            except Exception as e:
                parsed_tokens.append(token)

        # Clean sentence of non-alphanumerical characters
        query_processed = re.sub(r'[^A-Za-z0-9]+', ' ',
                                 ' '.join(parsed_tokens))

        # Convert to lowercase
        query_lower = query_processed.lower()

        return query_lower