velocity_init = -.1 # initial velocity epsilon = 0.5#1e-1 theta = 1/2.0 + epsilon # theta for MoreauJeanOSI integrator #theta = 1.0 E = 210e9 # young Modulus S = 0.000314 # Beam Section 1 cm for the diameter #S=0.1 L = 1.0 # length of the beam l = L/nDof # length of an element rho = 7800.0 # specific mass #rho=1.0 g = 9.81 # Gravity g=0.0 M= SimpleMatrix(nDof,nDof,SPARSE,nDof) K= SimpleMatrix(nDof,nDof,SPARSE,nDof) K.setValue(0,0, 1.*E*S/l) K.setValue(0,1,-1.*E*S/l) M.setValue(0,0, 1/3.*rho*S*l) M.setValue(0,1, 1/6.*rho*S*l) for i in range(1,nDof-1): K.setValue(i,i,2.*E*S/l) K.setValue(i,i-1,-1.*E*S/l) K.setValue(i,i+1,-1.*E*S/l) M.setValue(i,i,2/3.*rho*S*l) M.setValue(i,i-1,1/6.*rho*S*l) M.setValue(i,i+1,1/6.*rho*S*l)
# diode R1 current dataPlot[k, 3] = y[0] # diode R1 voltage dataPlot[k, 4] = -lambda_[0] # diode F2 voltage dataPlot[k, 5] = -lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] k += 1 aTS.nextStep() # comparison with reference file from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("DiodeBridge.ref")) error = norm(dataPlot[:, 0:6] - ref[:, 0:6]) print("error = ", error) #assert (error < 1e-09) withRef = True if (withPlot): # # plots # subplot(411) title('inductor voltage') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 1]) if (withRef): plot(ref[0:k - 1, 0], ref[0:k - 1, 1])
dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("result.ref")) if (norm(dataPlot - ref) > 1e-12): print("Warning. The result is rather different from the reference file.") # # plots # import matplotlib,os havedisplay = "DISPLAY" in os.environ if not havedisplay: matplotlib.use('Agg') import matplotlib.pyplot as plt plt.subplot(411)
def test_bouncing_ball1(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization bouncingBall.initialize(s) # # save and load data from xml and .dat # try: from siconos.io import save save(bouncingBall, "bouncingBall.xml") save(bouncingBall, "bouncingBall.bin") except: print("Warning : could not import save from siconos.io") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 #print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
index1 = sk.interactions(simulation.indexSet(1)) if (len(index1) == 4): dataPlot[k, 3] = norm(index1[0].lambda_(1)) + \ norm(index1[1].lambda_(1)) + norm(index1[2].lambda_(1)) + \ norm(index1[3].lambda_(1)) k += 1 simulation.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("result_dynamic.ref")) print("norm(dataPlot - ref) = {0}".format(norm(dataPlot - ref))) if (norm(dataPlot - ref) > 1e-11): print("Warning. The result is rather different from the reference file.") # # plots # if do_plot: subplot(511) title('position') plot(dataPlot[0:k, 0], dataPlot[0:k, 1]) y = ylim() plot(ref[0:k, 0], ref[0:k, 1])
TimeDiscretisation, LCP, TimeStepping from siconos.kernel import SimpleMatrix, getMatrix, SPARSE #, SPARSE_COORDINATE print(' -- create mass and stiffness matrix in Siconos -- ') n_dof = mass_mat_np.shape[0] print('n_dof=', n_dof) # M= SimpleMatrix(n_dof,n_dof,SPARSE_COORDINATE,n_dof) # K= SimpleMatrix(n_dof,n_dof,SPARSE_COORDINATE,n_dof) #M= SimpleMatrix(n_dof,n_dof,SPARSE,n_dof) #K= SimpleMatrix(n_dof,n_dof,SPARSE,n_dof) M = SimpleMatrix(n_dof, n_dof) K = SimpleMatrix(n_dof, n_dof) #input() #nnz=0 # for i in range(n_dof): # idx = np.where(stiffness_mat_np[i,:]>=1e-14) # for j in idx[0]: # K.setValue(i,j,stiffness_mat_np[i,j]) # idx = np.where(mass_mat_np[i,:]>=1e-14) # nnz = nnz + len(idx[0]) # for j in idx[0]: # M.setValue(i,j,mass_mat_np[i,j]) # nnz=0
# Run simulation sim.run() # Get data dataPlot = sim.data() # Save to disk savetxt('SMCExampleImplicitOT2-noCplugin-py.dat', dataPlot) # Plot interesting data subplot(411) title('x1') plot(dataPlot[:, 0], dataPlot[:, 1]) grid() subplot(412) title('x2') plot(dataPlot[:, 0], dataPlot[:, 2]) grid() subplot(413) title('u') plot(dataPlot[:, 0], dataPlot[:, 3]) grid() savefig('ismcOT2-noCplugin.png') # compare with the reference ref = getMatrix(SimpleMatrix("SMCExampleImplicitOT2-py.ref")) print("%e" % norm(dataPlot - ref)) if (norm(dataPlot - ref) > 1e-12): print(dataPlot - ref) print("Warning. The result is rather different from the reference file.")
# diode R1 current dataPlot[k, 3] = lambda_[0] # diode R1 voltage dataPlot[k, 4] = -y[0] # diode F2 voltage dataPlot[k, 5] = -lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] k += 1 aTS.nextStep() # comparison with reference file from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("DiodeBridgeCapFilter.ref")) error = norm(dataPlot[:, 0:4] - ref[:, 0:4]) print("error = ", error) assert (error < 1e-09) withRef = False if (withPlot): # # plots # subplot(411) title('inductor voltage') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 1]) if (withRef): plot(ref[0:k - 1, 0], ref[0:k - 1, 1])
while s.hasNextEvent(): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 s.nextStep() # # comparison with the reference file # ref = getMatrix(SimpleMatrix("BouncingBallTS.ref")) if (norm(dataPlot - ref) > 1e-12): print("Warning. The result is rather different from the reference file.") print(norm(dataPlot - ref)) # # plots # havedisplay = "DISPLAY" in os.environ if not havedisplay: matplotlib.use('Agg') plt.subplot(411) plt.title('position') plt.plot(dataPlot[:, 0], dataPlot[:, 1])
def test_diode_bridge(): """Build diode bridge model""" # dynamical system bridge_ds = FirstOrderLinearDS(init_state, A) # interaction diode_bridge_relation = FirstOrderLinearTIR(C, B) diode_bridge_relation.setDPtr(D) nslaw = ComplementarityConditionNSL(4) bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1) # Model diode_bridge = Model(t0, total_time, model_title) # add the dynamical system in the non smooth dynamical system diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds) # link the interaction and the dynamical system diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds) # Simulation # (1) OneStepIntegrators theta = 0.5 integrator = EulerMoreauOSI(theta) integrator.insertDynamicalSystem(bridge_ds) # (2) Time discretisation time_discretisation = TimeDiscretisation(t0, time_step) # (3) Non smooth problem non_smooth_problem = LCP() # (4) Simulation setup with (1) (2) (3) bridge_simulation = TimeStepping(time_discretisation, integrator, non_smooth_problem) # simulation initialization diode_bridge.initialize(bridge_simulation) k = 0 h = bridge_simulation.timeStep() # Number of time steps N = (total_time - t0) / h # Get the values to be plotted # ->saved in a matrix dataPlot data_plot = empty([N, 8]) x = bridge_ds.x() print("Initial state : ", x) y = bridge_interaction.y(0) print("First y : ", y) lambda_ = bridge_interaction.lambda_(0) # For the initial time step: # time data_plot[k, 0] = t0 # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 while k < N: bridge_simulation.computeOneStep() #non_smooth_problem.display() data_plot[k, 0] = bridge_simulation.nextTime() # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 bridge_simulation.nextStep() # # comparison with the reference file # ref = getMatrix( SimpleMatrix(os.path.join(working_dir, "data/diode_bridge.ref"))) assert norm(data_plot - ref) < 1e-12 return ref, data_plot
# inductor voltage dataPlot[k, 1] = x[0] # inductor current dataPlot[k, 2] = x[1] # diode voltage dataPlot[k, 3] = -y[0] # diode current dataPlot[k, 4] = lambda_[0] k += 1 aTS.nextStep() # comparison with reference file from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("CircuitRLCD.ref")) assert (norm(dataPlot - ref) < 1e-10) if (withPlot): # # plots # subplot(411) title('inductor voltage') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 1]) grid() subplot(412) title('inductor current') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 2]) grid()
dataPlot[k, 10] = q[3] dataPlot[k, 11] = q[4] dataPlot[k, 12] = q[5] dataPlot[k, 13] = q[6] dataPlot[k, 14] = v[1] dataPlot[k, 15] = v[2] k = k + 1 s.nextStep() savetxt("result-py.dat", dataPlot) # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix ref = getMatrix(SimpleMatrix("resultNETS.ref")) err = linalg.norm(dataPlot - ref) print("error w.r.t reference file =", err) if (err > 1e-12): print("Warning. The result is rather different from the reference file.") # # plots # from matplotlib.pyplot import subplot, title, plot, grid, show subplot(411) title('position') plot(dataPlot[:, 0], dataPlot[:, 1]) grid()