def factory(cli_arg: str, main_config: types.YAMLDict,
            cmdopts: types.Cmdopts) -> PopulationVariableDensity:
    """
    Factory to create :class:`PopulationVariableDensity` derived classes from
    the command line definition.
    """
    attr = vd.Parser()(cli_arg)
    sgp = pm.module_load_tiered(project=cmdopts['project'],
                                path='generators.scenario_generator_parser')
    kw = sgp.ScenarioGeneratorParser().to_dict(cmdopts['scenario'])
    extent = ArenaExtent(Vector3D(kw['arena_x'], kw['arena_y'], kw['arena_z']))

    densities = [
        x for x in np.linspace(
            attr['density_min'], attr['density_max'], num=attr['cardinality'])
    ]

    def __init__(self) -> None:
        PopulationVariableDensity.__init__(self, cli_arg, main_config,
                                           cmdopts['batch_input_root'],
                                           densities, extent)

    return type(
        cli_arg,  # type: ignore
        (PopulationVariableDensity, ),
        {"__init__": __init__})
Esempio n. 2
0
    def __init__(self, dims: Vector3D, origin: Vector3D = Vector3D()) -> None:
        self._origin = origin
        self.dims = dims
        self.ll = origin
        self.ur = origin + dims

        self.center = origin + dims / 2.0
Esempio n. 3
0
def factory(cli_arg: str, main_config: types.YAMLDict,
            cmdopts: types.Cmdopts) -> PopulationConstantDensity:
    """
    Factory to create :class:`PopulationConstantDensity` derived classes from
    the command line definition.

    """
    attr = cd.Parser()(cli_arg)
    sgp = pm.module_load_tiered(project=cmdopts['project'],
                                path='generators.scenario_generator_parser')
    kw = sgp.ScenarioGeneratorParser().to_dict(cmdopts['scenario'])

    is_2x1 = kw['arena_x'] == 2 * kw['arena_y']
    is_1x1 = kw['arena_x'] == kw['arena_y']

    if is_2x1:
        r = range(kw['arena_x'],
                  kw['arena_x'] + attr['cardinality'] * attr['arena_size_inc'],
                  attr['arena_size_inc'])
        dims = [
            sierra.core.utils.ArenaExtent(
                Vector3D(x, int(x / 2), kw['arena_z'])) for x in r
        ]
    elif is_1x1:
        r = range(kw['arena_x'],
                  kw['arena_x'] + attr['cardinality'] * attr['arena_size_inc'],
                  attr['arena_size_inc'])

        dims = [
            sierra.core.utils.ArenaExtent(Vector3D(x, x, kw['arena_z']))
            for x in r
        ]
    else:
        raise NotImplementedError(
            "Unsupported arena X,Y scaling '{0}': Must be [2x1,1x1]")

    def __init__(self) -> None:
        PopulationConstantDensity.__init__(self, cli_arg, main_config,
                                           cmdopts['batch_input_root'],
                                           attr["target_density"], dims,
                                           kw['scenario_tag'])

    return type(
        cli_arg,  # type: ignore
        (PopulationConstantDensity, ),
        {"__init__": __init__})
Esempio n. 4
0
    def _gen_camera_config(self, ext: ArenaExtent, index: int,
                           n_cameras) -> tuple:
        angle = (index % n_cameras) * (2.0 * math.pi / n_cameras)
        look_at = Vector3D(ext.xsize() / 2.0, ext.ysize() / 2.0, 0.0)
        hyp = math.sqrt(2 * max(look_at.x, look_at.y)**2)

        # As time proceeds and we interpolate between cameras, we want to slowly
        # be zooming in/moving the cameras closer to the arena center.
        if self.cmdline == 'sierra.sw+interp+zoom':
            factor = math.sqrt((n_cameras + index) / n_cameras)
        else:
            factor = 1.0

        pos_x = (hyp * math.cos(angle) + look_at.x) / factor
        pos_y = (hyp * math.sin(angle) + look_at.y) / factor
        pos_z = (max(ext.xsize(), ext.ysize()) * 0.50) / factor
        pos = Vector3D(pos_x, pos_y, pos_z)

        # This is what the ARGoS source does for the up vector for the default
        # camera configuration
        up = Vector3D(0, 0, 1)

        return index, up, look_at, pos
Esempio n. 5
0
def factory(cli_arg: str, main_config: types.YAMLDict,
            cmdopts: types.Cmdopts) -> PopulationSize:
    """
    Factory to create :class:`PopulationSize` derived classes from the command
    line definition.

    """
    parser = population_size.Parser()
    attr = parser(cli_arg)
    max_sizes = parser.to_sizes(attr)

    if cmdopts['robot_positions']:
        positions = [
            Vector3D.from_str(s, astype=float)
            for s in cmdopts['robot_positions']
        ]
    else:
        # Get the dimensions of the effective arena from the scenario so we can
        # place robots randomly within it.
        sgp = pm.module_load_tiered(
            project=cmdopts['project'],
            path='generators.scenario_generator_parser')
        kw = sgp.ScenarioGeneratorParser().to_dict(cmdopts['scenario'])
        xs = random.choices(range(0, kw['arena_x']), k=max_sizes[-1])
        ys = random.choices(range(0, kw['arena_y']), k=max_sizes[-1])
        zs = random.choices(range(0, kw['arena_z']), k=max_sizes[-1])
        positions = [Vector3D(x, y, z) for x, y, z in zip(xs, ys, zs)]

    def __init__(self) -> None:
        PopulationSize.__init__(self, cli_arg, main_config,
                                cmdopts['batch_input_root'], cmdopts['robot'],
                                max_sizes, positions)

    return type(
        cli_arg,  # type: ignore
        (PopulationSize, ),
        {"__init__": __init__})
Esempio n. 6
0
    def __init__(self, criteria: bc.IConcreteBatchCriteria, exp_num: int,
                 cmdopts: types.Cmdopts) -> None:
        self.exp_num = exp_num
        self.exp_input_root = os.path.join(
            cmdopts['batch_input_root'],
            criteria.gen_exp_dirnames(cmdopts)[exp_num])
        self.exp_def_fpath = os.path.join(self.exp_input_root,
                                          sierra.core.config.kPickleLeaf)
        self.logger = logging.getLogger(__name__)
        self.criteria = criteria

        from_bivar_bc1 = False
        from_bivar_bc2 = False
        from_univar_bc = False

        if criteria.is_bivar():
            bivar = tp.cast(bc.BivarBatchCriteria, criteria)
            from_bivar_bc1 = hasattr(bivar.criteria1, 'exp_scenario_name')
            from_bivar_bc2 = hasattr(bivar.criteria2, 'exp_scenario_name')
        else:
            from_univar_bc = hasattr(criteria, 'exp_scenario_name')

        # Need to get per-experiment arena dimensions from batch criteria, as
        # they might be different for each experiment
        if from_univar_bc:
            self.arena_dim = criteria.arena_dims()[exp_num]
            self.scenario_name = criteria.exp_scenario_name(exp_num)
            self.logger.debug(
                "Read scenario dimensions '%s' from univariate batch criteria",
                self.arena_dim)
        elif from_bivar_bc1 or from_bivar_bc2:
            self.arena_dim = criteria.arena_dims()[exp_num]
            self.logger.debug(
                "Read scenario dimensions '%s' bivariate batch criteria",
                self.arena_dim)
            self.scenario_name = criteria.exp_scenario_name(exp_num)

        else:  # Default case: scenario dimensions read from cmdline
            sgp = pm.module_load_tiered(
                project=cmdopts['project'],
                path='generators.scenario_generator_parser')
            kw = sgp.ScenarioGeneratorParser().to_dict(cmdopts['scenario'])
            self.arena_dim = ArenaExtent(
                Vector3D(kw['arena_x'], kw['arena_y'], kw['arena_z']))
            self.logger.debug("Read scenario dimensions %s from cmdline spec",
                              self.arena_dim)

            self.scenario_name = cmdopts['scenario']
Esempio n. 7
0
    def arena_dims(self) -> tp.List[utils.ArenaExtent]:
        """
        Returns:
            Arena dimensions used for each experiment in the batch. Not
            applicable to all criteria.
        """
        dims = []
        for exp in self.gen_attr_changelist():
            for c in exp:
                if c.path == ".//arena" and c.attr == "size":
                    x, y, z = c.value.split(',')
                    dims.append(utils.ArenaExtent(Vector3D(int(float(x)),
                                                           int(float(
                                                               y)),
                                                           int(float(z)))))

        assert len(dims) > 0,\
            "Scenario dimensions not contained in batch criteria"
        return dims
Esempio n. 8
0
    def gen_attr_changelist(self) -> tp.List[XMLAttrChangeSet]:
        """
        Generate list of sets of changes to input file to set the # robots for a
        set of arena sizes such that the swarm density is constant. Robots are
        approximated as point masses.

        """
        if not self.already_added:
            for changeset in self.attr_changes:
                for path, attr, value in changeset:

                    if path == ".//arena" and attr == "size":
                        x, y, z = [int(float(_)) for _ in value.split(",")]
                        extent = sierra.core.utils.ArenaExtent(
                            Vector3D(x, y, z))
                        # ARGoS won't start if there are 0 robots, so you always
                        # need to put at least 1.
                        n_robots = int(extent.area() *
                                       (self.target_density / 100.0))
                        if n_robots == 0:
                            n_robots = 1
                            self.logger.warning(
                                "n_robots set to 1 even though \
                            calculated as 0 for area=%s,density=%s",
                                extent.area, self.target_density)

                        changeset.add(
                            XMLAttrChange(".//arena/distribute/entity",
                                          "quantity", str(n_robots)))
                        self.logger.debug(
                            "Calculated swarm size=%d for extent=%s,density=%s",
                            n_robots, str(extent), self.target_density)
                        break

            self.already_added = True

        return self.attr_changes