Esempio n. 1
0
def visualize_layers(reachable_layers):

    layers = {}

    for (x, y, z), label in label_matrix.voxels.items():

        pos = Vec3(x, y, z)

        if label == 0 or label not in reachable_layers:
            continue

        if label in layers:
            layers[label][pos] = True
            continue

        layers[label] = np.zeros(label_matrix.shape, dtype=bool)
        layers[label][pos] = True

    color_gen = randomcolor.RandomColor()
    colors = color_gen.generate(count=len(layers), format_='rgb')

    for i in range(len(colors)):
        values = map(lambda e: int(e), re.findall('\\d+', colors[i]))
        values = list(values)
        colors[i] = (values[0] / 255, values[1] / 255, values[2] / 255)

    meshes = []

    i = 0
    for label in layers:
        color = colors[i]
        meshes.append(Mesh.from_voxel_grid(layers[label], colors=color))
        i += 1

    show(meshes)
Esempio n. 2
0
def render_dfaust(scene, prev_renderable, seq, target):
    new_renderable = Mesh.from_file(seq)
    scene.remove(prev_renderable)
    scene.add(new_renderable)
    scene.render()
    save_frame(target, scene.frame)

    return new_renderable
Esempio n. 3
0
 def test_obj(self):
     s = Scene(size=(1024, 1024), background=(0, 0, 0, 0))
     s.add(Mesh.from_file(path.join(path.dirname(__file__), "plane.obj")))
     s.rotate_x(np.pi / 2)
     s.camera_position = (-1, -1, -1)
     for i in range(180):
         s.render()
         imwrite("/tmp/frame_{:03d}.png".format(i), s.frame)
         s.rotate_y(np.pi / 90)
def get_renderables(P, group_indices, vertex_count=100):
    padding = 0.3
    order = "xyz"
    color_inactive = (0.8, 0.8, 0.8, 0.4)
    max_depth = int(np.log(P.n_primitives)/np.log(2)) + 1

    def get_center(depth, index):
        width = (2.**depth) * (1+padding)
        tree = dict(
            x=0,
            y=float(index)*(1+padding)-(width-1-padding)/2,
            z=-float(depth)*(1+padding)
        )
        return np.array([[tree[axis] for axis in order]])

    def children(d, i):
        if d+1 < max_depth:
            return children(d+1, 2*i) + children(d+1, 2*i+1)
        else:
            return [i]

    def colors(d, i):
        if d+1 < max_depth:
            return colors(d+1, 2*i) + colors(d+1, 2*i+1)
        else:
            return [(i, get_color(d, i, 2**(max_depth-1)))]

    meshes = []
    lines = []
    for d, i in group_indices:
        meshes.append(Mesh.from_superquadrics(
            *_unpack(
                P,
                get_center(d, i),
                children(d, i),
                colors(d, i),
                color_inactive
            ),
            vertex_count=vertex_count
        ))
        if d > 0:
            lines.extend([
                get_center(d-1, i//2)[0],
                get_center(d, i)[0]
            ])
    meshes.append(Lines(lines, (0.1, 0.1, 0.1), width=0.05))

    return meshes
Esempio n. 5
0
 def test_ply(self):
     s = Scene(size=(1024, 1024), background=(0, 0, 0, 0))
     s.add(
         Mesh.from_file(path.join(path.dirname(__file__),
                                  "primitives.ply")))
     s.up_vector = (0, -1, 0)
     s.camera_position = (1, 0.5, 1)
     light_initial = s.light
     r_light = np.sqrt(light_initial[0]**2 + light_initial[-1]**2)
     for i in range(180):
         theta = i * np.pi / 90
         r = np.sqrt(2)
         s.camera_position = (r * np.cos(theta), 0.5, r * np.sin(theta))
         s.light = (r_light * np.cos(theta), light_initial[1],
                    r_light * np.sin(theta))
         s.render()
         imwrite("/tmp/frame_{:03d}.png".format(i), s.frame)
Esempio n. 6
0
def _renderables_from_flat_partition(y_hat, args):
    _, P = y_hat.space_partition
    # Collect the sqs that have prob larger than threshold
    indices = [
        i for i in range(y_hat.n_primitives)
        if y_hat.probs_r[0, i] >= args.prob_threshold
    ]
    active_prims_map = {(0, j): i for i, j in enumerate(indices)}
    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=P[-1].translations_r[0, indices],
                    rotations=P[-1].rotations_r[0, indices],
                    sizes=P[-1].sizes_r[0, indices] / 2.0,
                    shapes=P[-1].shapes_r[0, indices])), get_color(0, indices))
    ], indices
Esempio n. 7
0
def _renderables_from_partition(y_hat, args):
    [C, P] = y_hat.space_partition
    active_prims_map = {
        p: i
        for (i, p) in enumerate(get_primitives_indices(P))
    }
    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=P[depth].translations_r[:, idx],
                    rotations=P[depth].rotations_r[:, idx],
                    sizes=P[depth].sizes_r[:, idx],
                    shapes=P[depth].shapes_r[:, idx])),
            get_color_groupped(depth, idx, args.max_depth)
            if args.group_color else get_color(depth, idx))
        for depth, idx in active_prims_map
    ], get_primitives_indices(P)
Esempio n. 8
0
    def test_cube(self):
        points = np.array([[1, 1, 1], [1, 1, -1], [1, -1, 1], [1, -1, -1],
                           [-1, 1, 1], [-1, 1, -1], [-1, -1, 1], [-1, -1, -1]
                           ]) * 0.5
        hull = ConvexHull(points)
        vertices = points[hull.simplices.ravel()].reshape(-1, 3)
        normals = (np.ones(
            (1, 3, 1)) * hull.equations[:, np.newaxis, :3]).reshape(-1, 3)
        colors = np.ones((len(vertices), 3)) * [0.1, 0.5, 0.8]

        s = Scene(size=(1024, 1024), background=(0, 0, 0, 0))
        s.add(Mesh(vertices, normals, colors))

        for i in range(180):
            s.render()
            imwrite("/tmp/frame_{:03d}.png".format(i), s.frame)
            s.rotate_z(np.pi / 90)
            s.rotate_x(np.pi / 180)
            s.rotate_y(np.pi / 360)
            s.camera_position = s.camera_position - 0.01
Esempio n. 9
0
def _renderables_from_fit(y_hat, args):
    F = y_hat.fit
    active_prims = filter_primitives(
        F,
        qos_less(args.qos_threshold),
        volume_larger(args.vol_threshold),
    )
    active_prims_map = {p: i for (i, p) in enumerate(active_prims)}
    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=F[depth].translations_r[:, idx],
                    rotations=F[depth].rotations_r[:, idx],
                    sizes=F[depth].sizes_r[:, idx],
                    shapes=F[depth].shapes_r[:, idx])),
            get_color_groupped(depth, idx, args.max_depth)
            if args.group_color else get_color(depth, idx))
        for depth, idx in active_prims_map
    ], active_prims
Esempio n. 10
0
def _renderables_from_flat_primitives(y_hat, args):
    # Collect the sqs that have prob larger than threshold
    indices = [
        i for i in range(y_hat.n_primitives)
        if y_hat.probs_r[0, i] >= args.prob_threshold
    ]
    active_prims_map = {(0, j): i for i, j in enumerate(indices)}

    if args.with_post_processing:
        indices = get_non_overlapping_primitives(y_hat, indices)

    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=y_hat.translations_r[0, indices],
                    rotations=y_hat.rotations_r[0, indices],
                    sizes=y_hat.sizes_r[0, indices],
                    shapes=y_hat.shapes_r[0, indices])), get_color(0, indices))
    ], indices
def get_filtered_renderables(tree, group_indices, qos_threshold, vol_threshold,
                             padding=0.3, order="xyz", no_lines=False,
                             visualize_as_tree=False,
                             color_inactive=(0.8, 0.8, 0.8, 1.0),
                             group_color=False, vertex_count=100,
                             line_offset=[0, 0, 0]):
    max_depth = max(d for (d, i) in group_indices)

    def get_center(depth, index):
        if visualize_as_tree:
            max_width = (2.**max_depth) * (1+padding)
            width = (2.**(max_depth - depth)) * (1+padding)
            tree = dict(
                x=0,
                y=float(index)*(width)-(max_width-width)/2,
                z=-float(depth)*(1+padding)
            )
        else:
            width = (2.**depth) * (1+padding)
            tree = dict(
                x=0,
                y=float(index)*(1+padding)-(width-1-padding)/2,
                z=-float(depth)*(1+padding)
            )
        return np.array([[tree[axis] for axis in order]])

    def get_ancestors(depth, index, storage):
        storage.add((depth, index))
        pdepth = depth-1
        pindex = index//2
        parent = pdepth, pindex
        if parent not in storage:
            get_ancestors(pdepth, pindex, storage)

    active_prims = filter_primitives(
        tree,
        qos_less(qos_threshold),
        volume_larger(vol_threshold)
    )
    active_prims_map = {p: i for (i, p) in enumerate(active_prims)}
    valid_nodes = set([(0, 0)])
    for d, i in active_prims:
        get_ancestors(d, i, valid_nodes)

    def children(d, i):
        if (d, i) in active_prims_map:
            return [active_prims_map[d, i]]
        elif d < len(tree):
            return children(d+1, 2*i) + children(d+1, 2*i+1)
        else:
            return []

    def colors(d, i):
        max_d = len(tree)
        if (d, i) in active_prims_map:
            return [(active_prims_map[d, i], get_color(d, i, 2**(max_d-1)))]
        elif d < max_d:
            return colors(d+1, 2*i) + colors(d+1, 2*i+1)
        else:
            return []

    for d, i in group_indices:
        if d > 0 and (d, i) in valid_nodes and len(children(d-1, i//2)) == 1:
            valid_nodes.remove((d, i))

    P = primitive_parameters_from_indices(tree, active_prims)
    meshes = []
    lines = []
    for d, i in group_indices:
        if (d, i) not in valid_nodes:
            continue
        sq_colors = colors(d, i)
        if group_color:
            sq_colors = [
                (j, get_color(d, i))
                for j, _ in sq_colors
            ]
        if len(group_indices) == 1:
            meshes.append(Mesh.from_superquadrics(
                *_unpack(
                    P,
                    get_center(0, 0),
                    children(d, i),
                    sq_colors,
                    color_inactive
                ),
                vertex_count=vertex_count,
                offset=get_center(0, 0)
            ))
        else:
            meshes.append(Mesh.from_superquadrics(
                *_unpack(
                    P,
                    get_center(d, i),
                    children(d, i),
                    sq_colors,
                    color_inactive
                ),
                vertex_count=vertex_count,
                offset=get_center(d, i)
            ))
        if d > 0 and not no_lines:
            lines.extend([
                get_center(d-1, i//2)[0] + np.asarray(line_offset),
                get_center(d, i)[0] + np.asarray(line_offset)
            ])
    meshes.append(Lines(lines, (0.1, 0.1, 0.1), width=0.05))

    if no_lines:
        meshes.pop()

    return meshes
Esempio n. 12
0
def main(argv):
    parser = argparse.ArgumentParser(
        description="Do the forward pass and visualize the recovered parts")
    parser.add_argument(
        "config_file",
        help="Path to the file that contains the experiment configuration")
    parser.add_argument("--output_directory",
                        default="../demo/output/",
                        help="Save the output files in that directory")
    parser.add_argument(
        "--weight_file",
        default=None,
        help=("The path to a previously trained model to continue"
              " the training from"))
    parser.add_argument("--prediction_file",
                        default=None,
                        help="The path to the predicted primitives")
    parser.add_argument("--background",
                        type=lambda x: list(map(float, x.split(","))),
                        default="1,1,1,1",
                        help="Set the background of the scene")
    parser.add_argument("--up_vector",
                        type=lambda x: tuple(map(float, x.split(","))),
                        default="0,0,1",
                        help="Up vector of the scene")
    parser.add_argument("--camera_target",
                        type=lambda x: tuple(map(float, x.split(","))),
                        default="0,0,0",
                        help="Set the target for the camera")
    parser.add_argument("--camera_position",
                        type=lambda x: tuple(map(float, x.split(","))),
                        default="-2.0,-2.0,-2.0",
                        help="Camera position in the scene")
    parser.add_argument("--window_size",
                        type=lambda x: tuple(map(int, x.split(","))),
                        default="512,512",
                        help="Define the size of the scene and the window")
    parser.add_argument("--with_rotating_camera",
                        action="store_true",
                        help="Use a camera rotating around the object")
    parser.add_argument("--mesh",
                        action="store_true",
                        help="Visualize the target mesh")
    parser.add_argument("--n_vertices",
                        type=int,
                        default=10000,
                        help="How many vertices to use per part")

    add_dataset_parameters(parser)
    args = parser.parse_args(argv)

    if torch.cuda.is_available():
        device = torch.device("cuda:0")
    else:
        device = torch.device("cpu")
    print("Running code on", device)

    # Check if output directory exists and if it doesn't create it
    if not os.path.exists(args.output_directory):
        os.makedirs(args.output_directory)

    config = load_config(args.config_file)
    # Extract the number of primitives
    n_primitives = config["network"]["n_primitives"]

    # Dictionary to keep the predictions used for the evaluation
    predictions = {}

    if args.prediction_file is None:
        # Create a dataset instance to generate the input samples
        dataset_directory = config["data"]["dataset_directory"]
        dataset_type = config["data"]["dataset_type"]
        train_test_splits_file = config["data"]["splits_file"]
        dataset = dataset_factory(
            config["data"]["dataset_factory"],
            (ModelCollectionBuilder(config).with_dataset(dataset_type).
             filter_category_tags(args.category_tags).filter_tags(
                 args.model_tags).random_subset(
                     args.random_subset).build(dataset_directory)),
        )
        assert len(dataset) == 1

        # Build the network architecture to be used for training
        network, _, _ = build_network(config, args.weight_file, device=device)
        network.eval()

        # Create the prediction input
        with torch.no_grad():
            for sample in dataset:
                sample = [s[None] for s in sample]  # make a batch dimension
                X = sample[0].to(device)
                targets = [yi.to(device) for yi in sample[1:]]
                F = network.compute_features(X)
                phi_volume, _ = network.implicit_surface(F, targets[0])
                y_pred, faces = network.points_on_primitives(
                    F,
                    args.n_vertices,
                    random=False,
                    mesh=True,
                    union_surface=False)
            predictions["phi_volume"] = phi_volume
            predictions["y_prim"] = y_pred
    else:
        preds = torch.load(args.prediction_file, map_location="cpu")
        y_pred = preds[4]
        faces = preds[5]
        targets = preds[0]
        predictions["phi_volume"] = preds[1]
        predictions["y_prim"] = y_pred

    # Get the renderables from the deformed vertices and faces
    vertices = y_pred.detach()
    parts = range(n_primitives)
    renderables = [
        Mesh.from_faces(vertices[0, :, i], faces, colors=get_colors(i))
        for i in parts
    ]
    behaviours = [
        SceneInit(
            scene_init(
                load_ground_truth(dataset) if args.mesh else None,
                args.up_vector, args.camera_position, args.camera_target,
                args.background)),
        LightToCamera(),
    ]
    if args.with_rotating_camera:
        behaviours += [
            CameraTrajectory(Circle(args.camera_target, args.camera_position,
                                    args.up_vector),
                             speed=1 / 180)
        ]
        show(renderables,
             size=args.window_size,
             behaviours=behaviours + [SnapshotOnKey()])

    print("Saving renderables to file")
    for i in range(n_primitives):
        m = trimesh.Trimesh(vertices[0, :, i].detach(), faces)
        m.export(os.path.join(args.output_directory,
                              "part_{:03d}.obj".format(i)),
                 file_type="obj")
Esempio n. 13
0
def sign_unsigned(fname='./data/elephant.pwn',
                  K=5,
                  ndisc=50,
                  debug_viz=True,
                  R=15,
                  cache_sign=False,
                  use_sign_cache=False):
    points, tetvertices, trivertices, is_in_band, epsilon, dist = section1(
        fname, K, ndisc)
    print('Chosen Epsilon:', epsilon.item())

    # coarse sign estimate
    print('sign estimate...')
    v2v = get_v2v(tetvertices.numpy())
    outside_ixes = torch.arange(len(dist))[dist >= epsilon]
    is_in_band = dist < epsilon

    if use_sign_cache:
        print('using sign cache...')
        with open('sign_cache.json', 'r') as reader:
            guesses = json.load(reader, parse_int=int)
            guesses = {int(k): v for k, v in guesses.items()}
    else:
        guesses = {}
        for ix in tqdm(outside_ixes.numpy()):
            guesses[ix] = estimate_sign(ix.item(), points.numpy(), v2v,
                                        is_in_band.numpy(), R)
    if cache_sign:
        print('caching sign...')
        guesses = {int(k): [int(v) for v in vec] for k, vec in guesses.items()}
        with open('sign_cache.json', 'w') as writer:
            json.dump(guesses, writer)

    print(guesses)

    # cross-sections of the sign plot
    alldata = []
    for v, changes in guesses.items():
        coords = points[v]
        vals = [val % 2 for val in changes if val > 0]
        if len(vals) > 0:
            sign = 1 if np.mean(vals) > 0.5 else 0
            alldata.append(
                [coords[0], coords[1], coords[2],
                 np.mean(vals), sign])
    alldata = np.array(alldata)

    spec = np.sort(np.unique(alldata[:, 2]))
    for spei, spe in enumerate(spec):
        kept = alldata[:, 2] == spe

        fig = plt.figure()
        gs = mpl.gridspec.GridSpec(1, 2)

        ax = plt.subplot(gs[0, 0])
        plt.scatter(alldata[kept, 0],
                    alldata[kept, 1],
                    c=alldata[kept, 3],
                    vmin=0,
                    vmax=1,
                    cmap='winter')
        ax.set_aspect('equal')
        plt.xlim((np.min(alldata[:, 0]), np.max(alldata[:, 0])))
        plt.ylim((np.min(alldata[:, 1]), np.max(alldata[:, 1])))

        ax = plt.subplot(gs[0, 1])
        plt.scatter(alldata[kept, 0],
                    alldata[kept, 1],
                    c=alldata[kept, 4],
                    vmin=0,
                    vmax=1,
                    cmap='winter')
        ax.set_aspect('equal')
        plt.xlim((np.min(alldata[:, 0]), np.max(alldata[:, 0])))
        plt.ylim((np.min(alldata[:, 1]), np.max(alldata[:, 1])))

        imname = f'out{spei:04}.jpg'
        print('saving', imname)
        plt.savefig(imname)
        plt.close(fig)

    # visualize coarse mesh
    kept = (dist[trivertices[:, 0]] < epsilon) & (dist[
        trivertices[:, 1]] < epsilon) & (dist[trivertices[:, 2]] < epsilon)
    m = Mesh.from_faces(points.numpy(),
                        trivertices.numpy()[kept],
                        colors=np.ones((len(points), 3)) * [1.0, 0.0, 0.0])
    show(m)
Esempio n. 14
0
        X = sample[0].to(device)
        y_hat = network(X)
        F = y_hat.fit
        [C, P] = y_hat.space_partition
        n_primitives = y_hat.n_primitives
        colors = torch.tensor(np.array(
            plt.cm.jet(np.linspace(0, 1, 16))
        ))

        if args.from_fit:
            max_depth = 2**(len(F) - 1)
        else:
            max_depth = -1
        meshes = [
            [Mesh.from_superquadrics(
                *_unpack(p, i, max_depth, colors, args.color_siblings)
            )]
            for i, p in enumerate(F if args.from_fit else P)
        ]
        behaviours = [
            CycleThroughObjects(meshes, interval=args.interval),
            LightToCamera()
        ]
        if args.save_frames:
            behaviours += [
                SaveFrames(args.save_frames, args.save_frequency)
            ]
        if args.with_rotating_camera:
            behaviours += [
                CameraTrajectory(
                    Circle([0, 0, 1], [4, 0, 1], [0, 0, 1]), 0.001
Esempio n. 15
0
import numpy as np

from simple_3dviz import Mesh, Lines
from simple_3dviz.window import show


def heart_voxel_grid(N):
    """Create a NxNxN voxel grid with True if the voxel is inside a heart
    object and False otherwise."""
    x = np.linspace(-1.3, 1.3, N)
    y = np.linspace(-1.3, 1.3, N)
    z = np.linspace(-1.3, 1.3, N)
    x, y, z = np.meshgrid(x, y, z)
    return (2 * x**2 + y**2 + z**2 -
            1)**3 - (1 / 10) * x**2 * z**3 - y**2 * z**3 < 0


if __name__ == "__main__":
    voxels = heart_voxel_grid(64)
    m = Mesh.from_voxel_grid(voxels, colors=(0.8, 0, 0))
    l = Lines.from_voxel_grid(voxels, colors=(0, 0, 0.), width=0.001)
    show([l, m])
Esempio n. 16
0
import numpy as np
import matplotlib.pyplot as plt

from simple_3dviz.renderables import Spherecloud
from simple_3dviz.behaviours.keyboard import SnapshotOnKey
from simple_3dviz.window import show

if __name__ == "__main__":
    t = np.linspace(0, 4 * np.pi, 20)
    x = np.sin(2 * t)
    y = np.cos(t)
    z = np.cos(2 * t)
    sizes = (2 + np.sin(t)) * 0.125
    centers = np.stack([x, y, z]).reshape(3, -1).T
    cmap = plt.cm.copper
    colors = cmap(np.random.choice(np.arange(500), centers.shape[0]))
    s = Spherecloud(centers=centers, sizes=sizes, colors=colors)

    from simple_3dviz import Mesh
    m = Mesh.from_file("models/baby_yoda.stl", color=(0.1, 0.8, 0.1))
    m.to_unit_cube()
    show([s, m], camera_position=(-2.8, -2.8, 0.1), size=(512, 512))
Esempio n. 17
0
def load_ground_truth(mesh_file):
    m = Mesh.from_file(mesh_file, color=(0.8, 0.8, 0.8, 0.3))
    # m.to_unit_cube()
    return m
def load_ground_truth(dataset):
    mesh = dataset.internal_dataset_object[0].groundtruth_mesh
    N = len(mesh.vertices)
    return Mesh.from_faces(mesh.vertices, mesh.faces, (0.8, 0.8, 0.8, 0.3))