Esempio n. 1
0
    def __init__(self,
                 n_readout=1000,
                 n_components=100,
                 damping=0.5,
                 weight_scaling=0.9,
                 discard_steps=0,
                 random_state=None,
                 alpha=1,
                 kernel="poly",
                 degree=3):
        self.n_readout = n_readout
        self.n_components = n_components
        self.damping = damping
        self.weight_scaling = weight_scaling
        self.discard_steps = discard_steps
        self.random_state = random_state
        self.alpha = alpha
        self.kernel = kernel
        self.degree = degree

        self.ESN = SimpleESN(n_readout=self.n_readout,
                             n_components=self.n_components,
                             damping=self.damping,
                             weight_scaling=self.weight_scaling,
                             discard_steps=self.discard_steps,
                             random_state=check_random_state(
                                 self.random_state))
        self.Kernel_Ridge = KernelRidge(alpha=self.alpha,
                                        kernel=self.kernel,
                                        gamma=None,
                                        degree=self.degree,
                                        coef0=1,
                                        kernel_params=None)
Esempio n. 2
0
def model_test_for_esn_base(Base,
                            esn_param,
                            X_train,
                            X_test,
                            Y_train,
                            Y_test,
                            n_estimators=500,
                            learning_rate=0.01,
                            Score=MLE,
                            Dist=Normal,
                            verbose=True,
                            verbose_eval=100,
                            plot_predict=True,
                            return_y_pred=False,
                            return_y_dists=False,
                            return_mse=False):

    ESN = SimpleESN(n_readout=esn_param['n_readout'],
                    n_components=esn_param['n_components'],
                    damping=esn_param['damping'],
                    weight_scaling=esn_param['weight_scaling'],
                    discard_steps=0,
                    random_state=None)
    X_train = ESN.fit_transform(X_train)
    X_test = ESN.fit_transform(X_test)

    ngb = NGBRegressor(Base=Base,
                       n_estimators=n_estimators,
                       verbose=verbose,
                       verbose_eval=verbose_eval,
                       learning_rate=learning_rate,
                       Dist=Dist,
                       Score=Score)
    print(ESN, '\n')
    print(ngb, '\n')
    ngb.fit(X_train, Y_train)
    Y_preds = ngb.predict(X_test)
    Y_dists = ngb.pred_dist(X_test)  # return norm method: mean std
    # test Mean Squared Error
    test_MSE = mean_squared_error(Y_preds, Y_test)
    print('\nTest MSE', test_MSE)
    # test Negative Log Likelihood
    test_NLL = -Y_dists.logpdf(Y_test).mean()
    print('Test NLL', test_NLL)

    if plot_predict:
        df = pd.concat([Y_test, pd.Series(Y_preds, index=Y_test.index)],
                       axis=1)
        df.columns = ['test', 'pred']
        df.plot(figsize=(10, 4),
                title='MSE:{}  NLL:{}'.format(round(test_MSE, 4),
                                              round(test_NLL, 4)))
    if (return_y_pred) & (not (return_y_dists)):
        return pd.Series(Y_preds, index=Y_test.index)
    if (not (return_y_pred)) & (return_y_dists):
        return Y_dists
    if (return_y_pred) & (return_y_dists):
        return pd.Series(Y_preds, index=Y_test.index), Y_dists
    if return_mse:
        return test_MSE
 def __init__(self,
              n_readout=1000,
              n_components=100,
              damping=0.5,
              weight_scaling=0.9,
              discard_steps=0,
              random_state=None,
              alpha=0.01):
     self.Ridge = Ridge(alpha=alpha)
     self.ESN = SimpleESN(n_readout=n_readout,
                          n_components=n_components,
                          damping=damping,
                          weight_scaling=weight_scaling,
                          discard_steps=discard_steps,
                          random_state=check_random_state(random_state))
Esempio n. 4
0
    def __init__(self, args, esn_param=None, box_cox=False):

        X_train, X_test, Y_train, Y_test = get_data2(hour_num=1,
                                                     transform='sin+cos',
                                                     train_index=[3001, 7002],
                                                     test_index=[2000, 3001],
                                                     return_y_scaler=False,
                                                     drop_else=True,
                                                     box_cox=box_cox)

        if esn_param is not None:
            ESN = SimpleESN(n_readout=esn_param['n_readout'],
                            n_components=esn_param['n_components'],
                            damping=esn_param['damping'],
                            weight_scaling=esn_param['weight_scaling'],
                            discard_steps=esn_param['discard_steps'],
                            random_state=check_random_state(
                                esn_param['random_state']))
            ESN.fit(X_train)
            X_train = ESN.transform(X_train)
            X_test = ESN.transform(X_test)
            print('ESN param:', esn_param)

        self.xs = np.array(X_train, dtype=np.float32)
        self.ys = np.array(Y_train, dtype=np.float32).reshape(len(Y_train), 1)
        self.test_xs = np.array(X_test, dtype=np.float32)
        self.test_ys = np.array(Y_test,
                                dtype=np.float32).reshape(len(Y_test), 1)

        # Standardize input features
        self.input_mean = np.mean(self.xs, 0)
        self.input_std = np.std(self.xs, 0)
        # self.xs = (self.xs - self.input_mean)/self.input_std

        # Target mean and std
        self.target_mean = np.mean(self.ys, 0)[0]
        self.target_std = np.std(self.ys, 0)[0]

        self.batch_size = args.batch_size
Esempio n. 5
0
    def __init__(self,
                 n_readout=1000,
                 n_components=100,
                 damping=0.5,
                 weight_scaling=0.9,
                 discard_steps=0,
                 random_state=None,
                 criterion="mse",
                 max_depth=None):
        self.n_readout = n_readout
        self.n_components = n_components
        self.damping = damping
        self.weight_scaling = weight_scaling
        self.discard_steps = discard_steps
        self.random_state = random_state
        self.criterion = criterion
        self.max_depth = max_depth

        self.ESN = SimpleESN(n_readout=self.n_readout,
                             n_components=self.n_components,
                             damping=self.damping,
                             weight_scaling=self.weight_scaling,
                             discard_steps=self.discard_steps,
                             random_state=check_random_state(
                                 self.random_state))
        self.Decision_Tree = DecisionTreeRegressor(criterion=self.criterion,
                                                   splitter="best",
                                                   max_depth=self.max_depth,
                                                   min_samples_split=2,
                                                   min_samples_leaf=1,
                                                   min_weight_fraction_leaf=0.,
                                                   max_features=None,
                                                   random_state=None,
                                                   max_leaf_nodes=None,
                                                   min_impurity_decrease=0.,
                                                   min_impurity_split=None,
                                                   presort=False)
Esempio n. 6
0
    def __init__(self,
                 n_readout=1000,
                 n_components=100,
                 damping=0.5,
                 weight_scaling=0.9,
                 discard_steps=0,
                 random_state=None,
                 epsilon=0.0,
                 C=1.0,
                 max_iter=1000):
        self.n_readout = n_readout
        self.n_components = n_components
        self.damping = damping
        self.weight_scaling = weight_scaling
        self.discard_steps = discard_steps
        self.random_state = random_state
        self.epsilon = epsilon
        self.C = C
        self.max_iter = max_iter

        self.ESN = SimpleESN(n_readout=self.n_readout,
                             n_components=self.n_components,
                             damping=self.damping,
                             weight_scaling=self.weight_scaling,
                             discard_steps=self.discard_steps,
                             random_state=check_random_state(
                                 self.random_state))
        self.Linear_SVR = LinearSVR(epsilon=self.epsilon,
                                    tol=1e-4,
                                    C=self.C,
                                    loss='epsilon_insensitive',
                                    fit_intercept=True,
                                    intercept_scaling=1.,
                                    dual=True,
                                    verbose=0,
                                    random_state=None,
                                    max_iter=self.max_iter)
Esempio n. 7
0
    def __init__(self,
                 n_readout=1000,
                 n_components=100,
                 damping=0.5,
                 weight_scaling=0.9,
                 discard_steps=0,
                 random_state=None,
                 alpha=0.01):
        self.n_readout = n_readout
        self.n_components = n_components
        self.damping = damping
        self.weight_scaling = weight_scaling
        self.discard_steps = discard_steps
        self.random_state = random_state
        self.alpha = alpha

        self.ESN = SimpleESN(n_readout=self.n_readout,
                             n_components=self.n_components,
                             damping=self.damping,
                             weight_scaling=self.weight_scaling,
                             discard_steps=self.discard_steps,
                             random_state=check_random_state(
                                 self.random_state))
        self.Lasso = Lasso(alpha=self.alpha)
Esempio n. 8
0
from sklearn.pipeline import Pipeline


if __name__ == '__main__':
    X = loadtxt('MackeyGlass_t17.txt')
    X = atleast_2d(X).T
    train_length = 2000
    test_length = 2000

    X_train = X[:train_length]
    y_train = X[1:train_length+1]
    X_test = X[train_length:train_length+test_length]
    y_test = X[train_length+1:train_length+test_length+1]

    # Simple training
    my_esn = SimpleESN(n_readout=1000, n_components=1000,
                       damping=0.3, weight_scaling=1.25)
    echo_train = my_esn.fit_transform(X_train)
    regr = Ridge(alpha=0.01)
    regr.fit(echo_train, y_train)
    echo_test = my_esn.transform(X_test)
    y_true, y_pred = y_test, regr.predict(echo_test)
    err = mean_squared_error(y_true, y_pred)

    fp = plt.figure(figsize=(12, 4))
    trainplot = fp.add_subplot(1, 3, 1)
    trainplot.plot(X_train[100:600], 'b')
    trainplot.set_title('Some training signal')
    echoplot = fp.add_subplot(1, 3, 2)
    echoplot.plot(echo_train[100:600, :20])
    echoplot.set_title('Some reservoir activation')
    testplot = fp.add_subplot(1, 3, 3)