Esempio n. 1
0
def test_SimpleESN_transform():
    esn =SimpleESN(n_readout = n_readout)
    echoes = esn.transform(X)
    assert_true(esn.weights_ is not None)     
    assert_true(esn.input_weights_ is not None)     
    assert_true(esn.readout_idx_ is not None)
    
    repeated_echoes = esn.transform(X)
    assert_array_equal (echoes, repeated_echoes)
Esempio n. 2
0
def test_SimpleESN_initialization():
    esn = SimpleESN(n_readout,
                    n_components=100,
                    damping=0.5,
                    weight_scaling=0.9,
                    discard_steps=0,
                    random_state=None)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples, n_readout))
Esempio n. 3
0
def test_SimpleESN_transform():
    esn = SimpleESN(n_readout=n_readout)
    echoes = esn.transform(X)
    assert_true(esn.weights_ is not None)
    assert_true(esn.input_weights_ is not None)
    assert_true(esn.readout_idx_ is not None)

    repeated_echoes = esn.transform(X)
    assert_array_equal(echoes, repeated_echoes)
Esempio n. 4
0
def test_SimpleESN_fit():
    esn = SimpleESN(n_readout = n_readout)
    esn = esn.fit(X)
    assert_true(esn.weights_ is not None)     
    assert_true(esn.input_weights_ is not None)     
    assert_true(esn.readout_idx_ is not None)
Esempio n. 5
0
def test_SimpleESN_initialization():
    esn = SimpleESN(n_readout, n_components=100, damping=0.5,
                    weight_scaling=0.9, discard_steps=0, random_state=None)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples, n_readout))
Esempio n. 6
0
def test_SimpleESN_incorrect_readout():
    n_readout, n_components = 10, 5
    esn =SimpleESN(n_readout = n_readout, n_components = n_components)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples, n_components)) 
Esempio n. 7
0
def test_SimpleESN_discard():
    discard_steps = 3
    esn =SimpleESN(n_readout = n_readout, discard_steps = discard_steps)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples-discard_steps, n_readout)) 
Esempio n. 8
0
    # # load data and make training set
    # data = torch.load('MackeyGlass_t17.txt')
    # # data shape should be (lens_ts, n_features)
    # train_input = data[0, :-1]
    # train_input=atleast_2d(train_input).T
    # train_target = data[0, 1:]
    # train_target=atleast_2d(train_target).T

    # test_input=data[-1,:-1]
    # test_input=atleast_2d(test_input).T
    # test_target=data[-1,1:]
    # test_target=atleast_2d(test_target).T

    # Simple training
    model_esn = SimpleESN(n_readout=1000,
                          n_components=1000,
                          damping=0.3,
                          weight_scaling=1.25)
    echo_train_state = model_esn.fit_transform(train_input)
    regr = Ridge(alpha=0.01)
    regr.fit(echo_train_state, train_target)

    # show the train result
    echo_train_target, echo_train_pred = train_target, regr.predict(
        echo_train_state)

    err_train = mean_squared_error(echo_train_target, echo_train_pred)

    data_figures = plt.figure(figsize=(12, 4))
    trainplot = data_figures.add_subplot(1, 3, 1)
    trainplot.plot(train_input[:], 'b')
    trainplot.set_title('Training Signal')
Esempio n. 9
0
from simple_esn import SimpleESN
import numpy as np
n_samples, n_features = 10, 5
np.random.seed(0)
X = np.random.randn(n_samples, n_features)
esn = SimpleESN(n_readout=2)
echoes = esn.fit_transform(X)
Esempio n. 10
0
def test_SimpleESN_fit():
    esn = SimpleESN(n_readout=n_readout)
    esn = esn.fit(X)
    assert_true(esn.weights_ is not None)
    assert_true(esn.input_weights_ is not None)
    assert_true(esn.readout_idx_ is not None)
Esempio n. 11
0
def test_SimpleESN_incorrect_readout():
    n_readout, n_components = 10, 5
    esn = SimpleESN(n_readout=n_readout, n_components=n_components)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples, n_components))
Esempio n. 12
0
def test_SimpleESN_discard():
    discard_steps = 3
    esn = SimpleESN(n_readout=n_readout, discard_steps=discard_steps)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples - discard_steps, n_readout))
Esempio n. 13
0
def test_SimpleESN_shape():
    esn = SimpleESN(n_readout=n_readout)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples, n_readout))
Esempio n. 14
0
test_data = Utils.readDataFile(test_data_file)
trainData=Utils.importTrainingData(training_data)
testData= Utils.importTestData(test_data)
trainSongsNotes = trainData[0]
testSongsNotes = testData[0]

trainSongsRhythm = trainData[1]
testSongsRhythm = testData[1]
####################### Reservoir Part

#fixed reservoir
#n_readout =  3
#discard = 40
#esn = SimpleESN(n_readout, n_components = 100, damping = 0.2, weight_scaling = 0.99, random_state = 1, discard_steps = discard)

esn = SimpleESN(n_readout, n_components=n_components, damping = damping, weight_scaling = weight_scaling, random_state = random_seed, discard_steps=discard)

#### feed one or more songs to the reservoir and collect the echoes



####################### Learning Part


possibleComposers = list(np.unique(training_data[:,1]))
possibleInstruments = list(np.unique(training_data[:,3]))
possibleStyles = list(np.unique(training_data[:,4]))
possibleYears = list(np.unique(training_data[:,5]))


Esempio n. 15
0
def test_SimpleESN_shape():
    esn =SimpleESN(n_readout = n_readout)
    echoes = esn.fit_transform(X)
    assert_true(echoes.shape == (n_samples, n_readout)) 
Esempio n. 16
0
	for index, i in enumerate(update):
		client.send_message(f"/ESN/{index}", ((i+1)/2))

	#client.send_message(f'/ESN/6', update[6])

		


if __name__ == '__main__':

<<<<<<< HEAD
	esn = SimpleESN(n_readout=20, 
                n_components=20, 
                n_inputs=1, 
                input_gain=3, 
                input_sparcity=1, 
                damping=0.9, 
                weight_scaling=1.5, 
                sparcity=1.0,
                random_state=31337)
=======
	# esn = SimpleESN(n_readout=7, n_components=7, n_inputs=1, input_gain=6, input_sparcity=1, damping=0.9, random_state=95326, weight_scaling=1.55, sparcity=0.7)

	#esn = SimpleESN(n_readout=7, n_components=7, n_inputs=1, input_gain=3, input_sparcity=1, damping=0.9, random_state=95326, weight_scaling=1.55, sparcity=0.7)
	#esn = SimpleESN(n_readout=7, n_components=7, n_inputs=1, input_gain=3, input_sparcity=1, damping=0.9, random_state=95326, weight_scaling=1.25, sparcity=0.7)
	#esn = SimpleESN(n_readout=25, n_components=25, n_inputs=1, input_gain=1, input_sparcity=1, damping=0.9, random_state=95326, weight_scaling=1.15, sparcity=0.95)
	#esn = SimpleESN(n_readout=16, n_components=16, n_inputs=2, input_gain=3, input_sparcity=0.3, damping=0.8, random_state=95328, weight_scaling=3, sparcity=0.0685)
	#esn = SimpleESN(n_readout=16, n_components=16, n_inputs=2, input_gain=3, input_sparcity=0.3, damping=0.8, random_state=95328, weight_scaling=1.15, sparcity=0.7)
	#esn = SimpleESN(n_readout=16, n_components=16, n_inputs=2, input_gain=3, input_sparcity=0.3, damping=0.8, random_state=95398, weight_scaling=1.25, sparcity=0.7)
	#esn = SimpleESN(n_readout=16, n_components=16, n_inputs=2, input_gain=3, input_sparcity=0.7, damping=0.9, random_state=95398, weight_scaling=1.65, sparcity=0.7)
	#esn = SimpleESN(n_readout=16, n_components=16, n_inputs=2, input_gain=3, input_sparcity=0.7, damping=0.4, random_state=95398, weight_scaling=2.0, sparcity=0.7)
Esempio n. 17
0
import numpy as np

if __name__ == '__main__':
    X = loadtxt('MackeyGlass_t17.txt')
    X = atleast_2d(X).T
    train_length = 2000
    test_length = 2000

    X_train = X[:train_length]
    y_train = X[1:train_length + 1]
    X_test = X[train_length:train_length + test_length]
    y_test = X[train_length + 1:train_length + test_length + 1]

    # Simple training
    my_esn = SimpleESN(n_readout=1000,
                       n_components=1000,
                       damping=0.3,
                       weight_scaling=1.25)
    echo_train = my_esn.fit_transform(X_train)
    regr = Ridge(alpha=0.01)
    regr.fit(echo_train, y_train)
    echo_test = my_esn.transform(X_test)
    y_true, y_pred = y_test, regr.predict(echo_test)
    err = mean_squared_error(y_true, y_pred)

    fp = plt.figure(figsize=(12, 4))
    trainplot = fp.add_subplot(1, 3, 1)
    trainplot.plot(X_train[100:600], 'b')
    trainplot.set_title('Some training signal')
    echoplot = fp.add_subplot(1, 3, 2)
    echoplot.plot(echo_train[100:600, :20])
    echoplot.set_title('Some reservoir activation')
Esempio n. 18
0
from time import time
import numpy as np

if __name__ == '__main__':
    X = loadtxt('MackeyGlass_t17.txt')
    X = atleast_2d(X).T
    train_length = 2000
    test_length = 2000
    
    X_train = X[:train_length]
    y_train = X[1:train_length+1]
    X_test = X[train_length:train_length+test_length]
    y_test = X[train_length+1:train_length+test_length+1]

    # Simple training
    my_esn = SimpleESN(n_readout=1000, n_components=1000,
                       damping = 0.3, weight_scaling = 1.25)
    echo_train = my_esn.fit_transform(X_train)
    regr = Ridge(alpha = 0.01)
    regr.fit(echo_train, y_train)
    echo_test = my_esn.transform(X_test)
    y_true, y_pred = y_test, regr.predict(echo_test)
    err = mean_squared_error(y_true, y_pred)
    
    fp = plt.figure(figsize=(12, 4))
    trainplot = fp.add_subplot(1, 3, 1)
    trainplot.plot(X_train[100:600], 'b')
    trainplot.set_title('Some training signal')
    echoplot = fp.add_subplot(1, 3, 2)
    echoplot.plot(echo_train[100:600,:20])
    echoplot.set_title('Some reservoir activation')
    testplot =  fp.add_subplot(1, 3, 3)