def crossing_triggered_headings_early_late_vary_param( SEED, SAVE_FILE, N_TRAJS, DURATION, DT, TAU, NOISE, BIAS, HIT_INFLUENCE, SQRT_K_0, VARIABLE_PARAMS, BOUNDS, PL_CONC, PL_MEAN, PL_STD, H_MIN_PEAK, H_MAX_PEAK, X_MIN_PEAK, X_MAX_PEAK, EARLY_LESS_THAN, SUBTRACT_PEAK_HEADING, T_BEFORE, T_AFTER, T_INT_START, T_INT_END, AX_GRID): """ Fly several agents through a simulated plume and plot their plume-crossing-triggered headings. """ # try to open saved results if os.path.isfile(SAVE_FILE): print('Results file found. Loading results file.') results = np.load(SAVE_FILE) else: print('Results file not found. Running analysis...') np.random.seed(SEED) # build plume pl = GaussianLaminarPlume(PL_CONC, PL_MEAN, PL_STD) # loop over all parameter sets varying_params = [] fixed_params = [] early_late_heading_diffs_all = [] early_late_heading_diffs_lb_all = [] early_late_heading_diffs_ub_all = [] for variable_params in VARIABLE_PARAMS: print('Variable params: {}'.format(variable_params)) assert set(variable_params.keys()) == set( ['threshold', 'tau_memory', 'sqrt_k_s']) # identify which parameter is varying for key, vals in variable_params.items(): if isinstance(vals, list): varying_params.append((key, vals)) fixed_params.append(([(k, v) for k, v in variable_params.items() if k != key])) n_param_sets = len(vals) break # make other parameters into lists so they can all be looped over nicely for key, vals in variable_params.items(): if not isinstance(vals, list): variable_params[key] = [vals for _ in range(n_param_sets)] early_late_heading_diffs = [] early_late_heading_diffs_lb = [] early_late_heading_diffs_ub = [] for param_set_ctr in range(len(variable_params.values()[0])): threshold = variable_params['threshold'][param_set_ctr] hit_influence = HIT_INFLUENCE tau_memory = variable_params['tau_memory'][param_set_ctr] k_0 = np.array([ [SQRT_K_0**2, 0], [0, SQRT_K_0**2], ]) k_s = np.array([ [variable_params['sqrt_k_s'][param_set_ctr]**2, 0], [0, variable_params['sqrt_k_s'][param_set_ctr]**2], ]) # build tracking agent ag = CenterlineInferringAgent(tau=TAU, noise=NOISE, bias=BIAS, threshold=threshold, hit_trigger='peak', hit_influence=hit_influence, tau_memory=tau_memory, k_0=k_0, k_s=k_s, bounds=BOUNDS) trajs = [] for _ in range(N_TRAJS): # choose random start position start_pos = np.array([ np.random.uniform(*BOUNDS[0]), np.random.uniform(*BOUNDS[1]), np.random.uniform(*BOUNDS[2]), ]) # make trajectory traj = ag.track(plume=pl, start_pos=start_pos, duration=DURATION, dt=DT) traj['headings'] = heading(traj['vs'])[:, 2] trajs.append(traj) crossings_early = [] crossings_late = [] ts_before = int(T_BEFORE / DT) ts_after = int(T_AFTER / DT) for traj in trajs: starts, onsets, peak_times, offsets, ends = \ segment_by_threshold(traj['odors'], threshold)[0].T for ctr, (start, peak_time, end) in enumerate(zip(starts, peak_times, ends)): if not (H_MIN_PEAK <= traj['headings'][peak_time] < H_MAX_PEAK): continue if not (X_MIN_PEAK <= traj['xs'][peak_time, 0] < X_MAX_PEAK): continue crossing = np.nan * np.zeros((ts_before + ts_after, )) ts_before_crossing = peak_time - start ts_after_crossing = end - peak_time if ts_before_crossing >= ts_before: crossing[:ts_before] = traj['headings'][ peak_time - ts_before:peak_time] else: crossing[ts_before - ts_before_crossing:ts_before] = \ traj['headings'][start:peak_time] if ts_after_crossing >= ts_after: crossing[ts_before:] = traj['headings'][ peak_time:peak_time + ts_after] else: crossing[ts_before:ts_before + ts_after_crossing] = \ traj['headings'][peak_time:end] if SUBTRACT_PEAK_HEADING: crossing -= crossing[ts_before] if ctr < EARLY_LESS_THAN: crossings_early.append(crossing) else: crossings_late.append(crossing) crossings_early = np.array(crossings_early) crossings_late = np.array(crossings_late) t = np.arange(-ts_before, ts_after) * DT h_mean_early = np.nanmean(crossings_early, axis=0) h_mean_late = np.nanmean(crossings_late, axis=0) h_sem_early = nansem(crossings_early, axis=0) h_sem_late = nansem(crossings_late, axis=0) h_mean_diff = h_mean_late - h_mean_early h_mean_diff_lb = h_mean_late - h_sem_late - (h_mean_early + h_sem_early) h_mean_diff_ub = h_mean_late + h_sem_late - (h_mean_early - h_sem_early) early_late_heading_diff = \ h_mean_diff[(t > T_INT_START) * (t <= T_INT_END)].mean() early_late_heading_diff_lb = \ h_mean_diff_lb[(t > T_INT_START) * (t <= T_INT_END)].mean() early_late_heading_diff_ub = \ h_mean_diff_ub[(t > T_INT_START) * (t <= T_INT_END)].mean() early_late_heading_diffs.append(early_late_heading_diff) early_late_heading_diffs_lb.append(early_late_heading_diff_lb) early_late_heading_diffs_ub.append(early_late_heading_diff_ub) early_late_heading_diffs_all.append( np.array(early_late_heading_diffs)) early_late_heading_diffs_lb_all.append( np.array(early_late_heading_diffs_lb)) early_late_heading_diffs_ub_all.append( np.array(early_late_heading_diffs_ub)) # save results results = np.array([{ 'varying_params': varying_params, 'fixed_params': fixed_params, 'early_late_heading_diffs_all': early_late_heading_diffs_all, 'early_late_heading_diffs_lb_all': early_late_heading_diffs_lb_all, 'early_late_heading_diffs_ub_all': early_late_heading_diffs_ub_all, }]) np.save(SAVE_FILE, results) results = results[0] ## MAKE PLOTS fig_size = (5 * AX_GRID[1], 4 * AX_GRID[0]) fig, axs = plt.subplots(*AX_GRID, figsize=fig_size, tight_layout=True) for ax_ctr in range(len(results['varying_params'])): ax = axs.flatten()[ax_ctr] ys_plot = results['early_late_heading_diffs_all'][ax_ctr] ys_err = [ ys_plot - results['early_late_heading_diffs_lb_all'][ax_ctr], results['early_late_heading_diffs_ub_all'][ax_ctr] - ys_plot ] xs_name = results['varying_params'][ax_ctr][0] xs_plot = np.arange(len(ys_plot)) ax.errorbar(xs_plot, ys_plot, yerr=ys_err, color='k', fmt='--o') ax.axhline(0, color='gray') if np.max(results['early_late_heading_diffs_ub_all'][ax_ctr]) > 0: y_range = np.max(results['early_late_heading_diffs_ub_all'][ax_ctr]) - \ np.min(results['early_late_heading_diffs_lb_all'][ax_ctr]) else: y_range = -np.min( results['early_late_heading_diffs_lb_all'][ax_ctr]) y_min = np.min( results['early_late_heading_diffs_lb_all'][ax_ctr]) - 0.1 * y_range y_max = max(np.max(results['early_late_heading_diffs_ub_all'][ax_ctr]), 0) + 0.1 * y_range ax.set_xlim(-1, len(ys_plot)) ax.set_xticks(xs_plot) x_ticklabels = results['varying_params'][ax_ctr][1] if xs_name == 'threshold': x_ticklabels = [ '{0:.4f}'.format(xtl * (0.0476 / 526)) for xtl in x_ticklabels ] ax.set_xticklabels(x_ticklabels) ax.set_ylim(y_min, y_max) if xs_name == 'tau_memory': x_label = 'tau_m (s)' elif xs_name == 'threshold': x_label = 'threshold (% ethanol)' else: x_label = xs_name ax.set_xlabel(x_label) ax.set_ylabel('mean heading difference\nfor late vs. early crossings') for ax in axs.flatten(): set_font_size(ax, 16) return fig
def example_trajectory_centerline_with_plume(SEED, DURATION, DT, TAU, NOISE, BIAS, THRESHOLD, HIT_INFLUENCE, TAU_MEMORY, K_0, K_S, BOUNDS, PL_CONC, PL_MEAN, PL_STD): """ Create an example trajectory and plot some of the resulting covariates. """ # build plume and agent pl = GaussianLaminarPlume(PL_CONC, PL_MEAN, PL_STD) k_0 = K_0 * np.eye(2) k_s = K_S * np.eye(2) ag = CenterlineInferringAgent(tau=TAU, noise=NOISE, bias=BIAS, threshold=THRESHOLD, hit_trigger='peak', hit_influence=HIT_INFLUENCE, k_0=k_0, k_s=k_s, tau_memory=TAU_MEMORY, bounds=BOUNDS) # generate the trajectory np.random.seed(SEED) start_pos = np.array([ np.random.uniform(*BOUNDS[0]), np.random.uniform(*BOUNDS[1]), np.random.uniform(*BOUNDS[2]), ]) traj = ag.track(pl, start_pos, DURATION, DT) # plot trajectory fig = plt.figure(figsize=(15, 10), tight_layout=True) axs = [fig.add_subplot(4, 1, 1)] axs[-1].plot(traj['xs'][:, 0], traj['xs'][:, 1], lw=2, color='k', zorder=0) axs[-1].scatter(traj['xs'][0, 0], traj['xs'][0, 1], lw=0, c='r', zorder=1, s=100) axs[-1].set_xlim(*BOUNDS[0]) axs[-1].set_ylim(*BOUNDS[1]) axs[-1].set_xlabel('x (m)') axs[-1].set_ylabel('y (m)') axs[-1].set_title('example trajectory') # plot some histograms speeds = np.linalg.norm(traj['vs'], axis=1) ws = np.linalg.norm(angular_velocity(traj['vs'], DT), axis=1) ws = ws[~np.isnan(ws)] axs.append(fig.add_subplot(4, 2, 3)) axs.append(fig.add_subplot(4, 2, 4)) axs[-2].hist(speeds, bins=30, lw=0, normed=True) axs[-1].hist(ws, bins=30, lw=0, normed=True) axs[-2].set_xlabel('speed (m/s)') axs[-1].set_xlabel('ang. vel (rad/s)') axs[-2].set_ylabel('relative counts') axs.append(fig.add_subplot(4, 1, 3)) axs.append(axs[-1].twinx()) ts = traj['ts'] odors = traj['odors'] cl_vars = np.trace(traj['centerline_ks'], axis1=1, axis2=2) axs[-2].plot(ts, odors, color='r', lw=2) axs[-1].plot(ts, cl_vars, color='k', lw=2) axs[-2].set_xlabel('time (s)') axs[-2].set_ylabel('odor') axs[-1].set_ylabel('centerline var') axs.append(fig.add_subplot(4, 1, 4)) axs.append(axs[-1].twinx()) bs = traj['bs'] axs[-2].plot(ts, odors, color='r', lw=2) axs[-1].plot(ts, bs[:, 0], color='k', lw=2) axs[-2].set_xlabel('time (s)') axs[-2].set_ylabel('odor') axs[-1].set_ylabel('upwind bias') for ax in axs: set_font_size(ax, 16) return fig
def crossing_triggered_headings_early_late_surge( SEED, N_TRAJS, DURATION, DT, BOUNDS, TAU, NOISE, BIAS, AGENT_THRESHOLD, SURGE_AMP, TAU_SURGE, PL_CONC, PL_MEAN, PL_STD, ANALYSIS_THRESHOLD, H_MIN_PEAK, H_MAX_PEAK, X_MIN_PEAK, X_MAX_PEAK, EARLY_LESS_THAN, SUBTRACT_PEAK_HEADING, T_BEFORE, T_AFTER, SAVE_FILE): """ Fly several agents through a simulated plume and plot their plume-crossing-triggered headings. """ # build plume and agent pl = GaussianLaminarPlume(PL_CONC, PL_MEAN, PL_STD) ag = SurgingAgent(tau=TAU, noise=NOISE, bias=BIAS, threshold=AGENT_THRESHOLD, hit_trigger='peak', surge_amp=SURGE_AMP, tau_surge=TAU_SURGE, bounds=BOUNDS) # GENERATE TRAJECTORIES np.random.seed(SEED) trajs = [] for _ in range(N_TRAJS): # choose random start position start_pos = np.array([ np.random.uniform(*BOUNDS[0]), np.random.uniform(*BOUNDS[1]), np.random.uniform(*BOUNDS[2]), ]) # make trajectory traj = ag.track(plume=pl, start_pos=start_pos, duration=DURATION, dt=DT) traj['headings'] = heading(traj['vs'])[:, 2] trajs.append(traj) # ANALYZE TRAJECTORIES n_crossings = [] # collect early and late crossings crossings_early = [] crossings_late = [] crossings_save = [] ts_before = int(T_BEFORE / DT) ts_after = int(T_AFTER / DT) for traj in trajs: starts, onsets, peak_times, offsets, ends = \ segment_by_threshold(traj['odors'], ANALYSIS_THRESHOLD)[0].T n_crossings.append(len(peak_times)) for ctr, (start, peak_time, end) in enumerate(zip(starts, peak_times, ends)): # skip crossings that don't meet inclusion criteria if not (H_MIN_PEAK <= traj['headings'][peak_time] < H_MAX_PEAK): continue if not (X_MIN_PEAK <= traj['xs'][peak_time, 0] < X_MAX_PEAK): continue crossing = np.nan * np.zeros((ts_before + ts_after, )) ts_before_crossing = peak_time - start ts_after_crossing = end - peak_time if ts_before_crossing >= ts_before: crossing[:ts_before] = traj['headings'][peak_time - ts_before:peak_time] else: crossing[ts_before - ts_before_crossing:ts_before] = \ traj['headings'][start:peak_time] if ts_after_crossing >= ts_after: crossing[ts_before:] = traj['headings'][peak_time:peak_time + ts_after] else: crossing[ts_before:ts_before + ts_after_crossing] = \ traj['headings'][peak_time:end] if SUBTRACT_PEAK_HEADING: crossing -= crossing[ts_before] if ctr + 1 < EARLY_LESS_THAN: crossings_early.append(crossing) else: crossings_late.append(crossing) crossings_save.append((ctr + 1, crossing.copy())) # save crossings save_dict_full = { 'ts_before': ts_before, 'ts_after': ts_after, 'crossings': crossings_save } save_file = SAVE_FILE + '_full.npy' np.save(save_file, np.array([save_dict_full])) n_crossings = np.array(n_crossings) crossings_early = np.array(crossings_early) crossings_late = np.array(crossings_late) t = np.arange(-ts_before, ts_after) * DT p_vals = get_ks_p_vals(crossings_early, crossings_late) h_mean_early = np.nanmean(crossings_early, axis=0) h_sem_early = nansem(crossings_early, axis=0) h_mean_late = np.nanmean(crossings_late, axis=0) h_sem_late = nansem(crossings_late, axis=0) save_data = {'t': t, 'early': h_mean_early, 'late': h_mean_late} np.save(SAVE_FILE + '.npy', np.array([save_data])) fig, axs = plt.figure(figsize=(15, 15), tight_layout=True), [] axs.append(fig.add_subplot(3, 2, 1)) axs.append(fig.add_subplot(3, 2, 2)) handles = [] try: handles.append(axs[0].plot(t, h_mean_early, lw=3, color='b', label='early')[0]) axs[0].fill_between(t, h_mean_early - h_sem_early, h_mean_early + h_sem_early, color='b', alpha=0.2) except: pass try: handles.append(axs[0].plot(t, h_mean_late, lw=3, color='g', label='late')[0]) axs[0].fill_between(t, h_mean_late - h_sem_late, h_mean_late + h_sem_late, color='g', alpha=0.2) except: pass # axs[0].axvline(0, ls='--', color='gray') ## get y-position to plot p-vals at y_min, y_max = axs[0].get_ylim() y_range = y_max - y_min y_p_vals = (y_min + 0.02 * y_range) * np.ones(len(p_vals)) y_p_vals_10 = y_p_vals.copy() y_p_vals_05 = y_p_vals.copy() y_p_vals_01 = y_p_vals.copy() y_p_vals_10[p_vals > 0.1] = np.nan y_p_vals_05[p_vals > 0.05] = np.nan y_p_vals_01[p_vals > 0.01] = np.nan axs[0].plot(t, y_p_vals_10, lw=4, color='gray') axs[0].plot(t, y_p_vals_05, lw=4, color=(1, 0, 0)) axs[0].plot(t, y_p_vals_01, lw=4, color=(.25, 0, 0)) axs[0].set_xlabel('time since peak (s)') if SUBTRACT_PEAK_HEADING: axs[0].set_ylabel('change in heading (deg)') else: axs[0].set_ylabel('heading (deg)') axs[0].legend(handles=handles, fontsize=16) bin_min = -0.5 bin_max = n_crossings.max() + 0.5 bins = np.linspace(bin_min, bin_max, bin_max - bin_min + 1, endpoint=True) axs[1].hist(n_crossings, bins=bins, lw=0, normed=True) axs[1].set_xlim(bin_min, bin_max) axs[1].set_xlabel('number of crossings') axs[1].set_ylabel('proportion of trajectories') axs.append(fig.add_subplot(3, 1, 2)) axs[2].plot(trajs[0]['xs'][:, 0], trajs[0]['xs'][:, 1]) axs[2].axhline(0, color='gray', ls='--') axs[2].set_xlabel('x (m)') axs[2].set_ylabel('y (m)') axs.append(fig.add_subplot(3, 1, 3)) all_xy = np.concatenate([traj['xs'][:, :2] for traj in trajs[:3000]], axis=0) x_bins = np.linspace(BOUNDS[0][0], BOUNDS[0][1], 66, endpoint=True) y_bins = np.linspace(BOUNDS[1][0], BOUNDS[1][1], 30, endpoint=True) axs[3].hist2d(all_xy[:, 0], all_xy[:, 1], bins=(x_bins, y_bins)) axs[3].set_xlabel('x (m)') axs[3].set_ylabel('y (m)') for ax in axs: set_font_size(ax, 20) return fig
def crossing_triggered_headings_all( SEED, N_TRAJS, DURATION, DT, TAU, NOISE, BIAS, AGENT_THRESHOLD, HIT_INFLUENCE, TAU_MEMORY, K_0, K_S, BOUNDS, PL_CONC, PL_MEAN, PL_STD, ANALYSIS_THRESHOLD, H_MIN_PEAK, H_MAX_PEAK, SUBTRACT_PEAK_HEADING, T_BEFORE, T_AFTER, Y_LIM): """ Fly several agents through a simulated plume and plot their plume-crossing-triggered headings. """ # build plume and agent pl = GaussianLaminarPlume(PL_CONC, PL_MEAN, PL_STD) k_0 = K_0 * np.eye(2) k_s = K_S * np.eye(2) ag = CenterlineInferringAgent(tau=TAU, noise=NOISE, bias=BIAS, threshold=AGENT_THRESHOLD, hit_trigger='peak', hit_influence=HIT_INFLUENCE, k_0=k_0, k_s=k_s, tau_memory=TAU_MEMORY, bounds=BOUNDS) # generate trajectories np.random.seed(SEED) trajs = [] for _ in range(N_TRAJS): # choose random start position start_pos = np.array([ np.random.uniform(*BOUNDS[0]), np.random.uniform(*BOUNDS[1]), np.random.uniform(*BOUNDS[2]), ]) # make trajectory traj = ag.track(plume=pl, start_pos=start_pos, duration=DURATION, dt=DT) traj['headings'] = heading(traj['vs'])[:, 2] trajs.append(traj) crossings = [] ts_before = int(T_BEFORE / DT) ts_after = int(T_AFTER / DT) for traj in trajs: starts, onsets, peak_times, offsets, ends = \ segment_by_threshold(traj['odors'], ANALYSIS_THRESHOLD)[0].T for start, peak_time, end in zip(starts, peak_times, ends): if not (H_MIN_PEAK <= traj['headings'][peak_time] < H_MAX_PEAK): continue crossing = np.nan * np.zeros((ts_before + ts_after, )) ts_before_crossing = peak_time - start ts_after_crossing = end - peak_time if ts_before_crossing >= ts_before: crossing[:ts_before] = traj['headings'][peak_time - ts_before:peak_time] else: crossing[ts_before - ts_before_crossing:ts_before] = \ traj['headings'][start:peak_time] if ts_after_crossing >= ts_after: crossing[ts_before:] = traj['headings'][peak_time:peak_time + ts_after] else: crossing[ts_before:ts_before + ts_after_crossing] = \ traj['headings'][peak_time:end] if SUBTRACT_PEAK_HEADING: crossing -= crossing[ts_before] crossings.append(crossing) crossings = np.array(crossings) t = np.arange(-ts_before, ts_after) * DT fig, ax = plt.subplots(1, 1, figsize=(8, 6), tight_layout=True) h_mean = np.nanmean(crossings, axis=0) h_sem = nansem(crossings, axis=0) ax.plot(t, crossings.T, lw=0.5, alpha=0.5, color='c', zorder=0) ax.plot(t, h_mean, lw=3, color='k') ax.fill_between(t, h_mean - h_sem, h_mean + h_sem, color='k', alpha=0.2) ax.axvline(0, ls='--', color='gray') ax.set_ylim(*Y_LIM) ax.set_xlabel('time since peak (s)') if SUBTRACT_PEAK_HEADING: ax.set_ylabel('change in heading (deg)') else: ax.set_ylabel('heading (deg)') set_font_size(ax, 16) return fig
def example_trajectory_surging_with_plume(SEED, DURATION, DT, TAU, NOISE, BIAS, THRESHOLD, SURGE_AMP, TAU_SURGE, BOUNDS, PL_CONC, PL_MEAN, PL_STD): """ Create an example trajectory and plot some of the resulting covariates. """ # build plume and agent pl = GaussianLaminarPlume(PL_CONC, PL_MEAN, PL_STD) ag = SurgingAgent(tau=TAU, noise=NOISE, bias=BIAS, threshold=THRESHOLD, hit_trigger='peak', surge_amp=SURGE_AMP, tau_surge=TAU_SURGE, bounds=BOUNDS) # generate the trajectory np.random.seed(SEED) start_pos = np.array([ np.random.uniform(*BOUNDS[0]), np.random.uniform(*BOUNDS[1]), np.random.uniform(*BOUNDS[2]), ]) traj = ag.track(pl, start_pos, DURATION, DT) # plot trajectory fig = plt.figure(figsize=(15, 10), tight_layout=True) axs = [fig.add_subplot(3, 1, 1)] axs[-1].plot(traj['xs'][:, 0], traj['xs'][:, 1], lw=2, color='k', zorder=0) axs[-1].scatter(traj['xs'][0, 0], traj['xs'][0, 1], lw=0, c='r', zorder=1, s=100) axs[-1].set_xlim(*BOUNDS[0]) axs[-1].set_ylim(*BOUNDS[1]) axs[-1].set_xlabel('x (m)') axs[-1].set_ylabel('y (m)') axs[-1].set_title('example trajectory') # plot some histograms speeds = np.linalg.norm(traj['vs'], axis=1) ws = np.linalg.norm(angular_velocity(traj['vs'], DT), axis=1) ws = ws[~np.isnan(ws)] axs.append(fig.add_subplot(3, 2, 3)) axs.append(fig.add_subplot(3, 2, 4)) axs[-2].hist(speeds, bins=30, lw=0, normed=True) axs[-1].hist(ws, bins=30, lw=0, normed=True) axs[-2].set_xlabel('speed (m/s)') axs[-1].set_xlabel('ang. vel (rad/s)') axs[-2].set_ylabel('relative counts') axs.append(fig.add_subplot(3, 1, 3)) axs.append(axs[-1].twinx()) ts = traj['ts'] odors = traj['odors'] surge_forces = traj['surges'] axs[-2].plot(ts, odors, color='r', lw=2) axs[-1].plot(ts, surge_forces, color='k', lw=2) axs[-2].set_xlabel('time (s)') axs[-2].set_ylabel('odor', color='red') axs[-1].set_ylabel('surge forces') for ax in axs: set_font_size(ax, 16) return fig
def example_trajectory_surging_no_plume(SEED, DURATION, DT, TAU, NOISE, BIAS, BOUNDS): """ Create an example trajectory and plot some of the resulting covariates. """ # build plume and agent pl = GaussianLaminarPlume(0, np.array([0., 0]), [1., 1.]) ag = SurgingAgent(tau=TAU, noise=NOISE, bias=BIAS, threshold=np.inf, hit_trigger='peak', surge_strength=0, tau_surge=0, bounds=BOUNDS) # generate the trajectory np.random.seed(SEED) start_pos = np.array([ np.random.uniform(*BOUNDS[0]), np.random.uniform(*BOUNDS[1]), np.random.uniform(*BOUNDS[2]), ]) traj = ag.track(pl, start_pos, DURATION, DT) # plot trajectory fig = plt.figure(figsize=(15, 10), tight_layout=True) axs = [] axs.append(fig.add_subplot(2, 1, 1)) axs[0].plot(traj['xs'][:, 0], traj['xs'][:, 1], lw=2, color='k', zorder=0) axs[0].scatter(traj['xs'][0, 0], traj['xs'][0, 1], lw=0, c='r', zorder=1, s=100) axs[0].set_xlim(*BOUNDS[0]) axs[0].set_ylim(*BOUNDS[1]) axs[0].set_xlabel('x (m)') axs[0].set_ylabel('y (m)') axs[0].set_title('example trajectory') # plot some histograms speeds = np.linalg.norm(traj['vs'], axis=1) ws = np.linalg.norm(angular_velocity(traj['vs'], DT), axis=1) ws = ws[~np.isnan(ws)] axs.append(fig.add_subplot(2, 2, 3)) axs.append(fig.add_subplot(2, 2, 4)) axs[1].hist(speeds, bins=30, lw=0, normed=True) axs[2].hist(ws, bins=30, lw=0, normed=True) axs[1].set_xlabel('speed (m/s)') axs[2].set_xlabel('ang. vel (rad/s)') axs[1].set_ylabel('relative counts') for ax in axs: set_font_size(ax, 16) return fig