Esempio n. 1
0
def q2_full_full():
    duration = 60
    dt = 0.1
    current_list1 = current_generator(duration, dt, [(7, 8), (1, 2)])
    current_list2 = current_generator(duration, dt, [(1, 2), (7, 8)])
    current_list3 = current_generator(duration, dt, [(1, 2), (1, 2)])
    neuron_params_exc1 = {
        'r': 5,
        'tau': 8,
        'threshold': -60,
        'current': current_list1
    }
    neuron_params_exc2 = {
        'r': 5,
        'tau': 8,
        'threshold': -60,
        'current': current_list2
    }
    neuron_params_inh = {
        'r': 8,
        'tau': 5,
        'threshold': -62,
        'is_inh': True,
        'current': current_list3
    }
    pop1 = Population(400, LIF, exc_ratio=1, **neuron_params_exc1)
    pop2 = Population(200, LIF, exc_ratio=0, **neuron_params_inh)
    pop3 = Population(400, LIF, exc_ratio=1, **neuron_params_exc2)

    conn1 = Connection(pop1, pop1).apply("full", mu=0.2, sigma=0.1)
    conn2 = Connection(pop2, pop2).apply("full", mu=0.2, sigma=0.1)
    conn3 = Connection(pop3, pop3).apply("full", mu=0.2, sigma=0.1)
    conn4 = Connection(pop1, pop2).apply("full", mu=0.2, sigma=0.1)
    conn5 = Connection(pop2, pop3).apply("full", mu=0.2, sigma=0.1)
    conn6 = Connection(pop2, pop1).apply("full", mu=0.2, sigma=0.1)
    conn7 = Connection(pop3, pop2).apply("full", mu=0.2, sigma=0.1)
    # conn8 = Connection(pop2, pop1).apply("full", mu=0.2, sigma=0.1)
    # conn9 = Connection(pop3, pop2).apply("full", mu=0.2, sigma=0.1)
    conn8 = Connection(pop3, pop1).apply("fixed_prob",
                                         p=0.001,
                                         mu=0.2,
                                         sigma=0.1)
    conn9 = Connection(pop1, pop3).apply("fixed_prob",
                                         p=0.001,
                                         mu=0.2,
                                         sigma=0.1)

    sim = Network(populations=[pop1, pop2, pop3],
                  connections=[
                      conn1, conn2, conn3, conn4, conn5, conn6, conn7, conn8,
                      conn9
                  ],
                  time_step=dt)
    sim.run(duration)
    print(pop1.spikes_per_neuron.shape)
    print(pop2.spikes_per_neuron.shape)
    print(pop3.spikes_per_neuron.shape)
    spikes = aggregate_population_spikes([pop1, pop2, pop3])
    print(spikes.shape)
    decision_plot(pop1.activity, pop3.activity)
def main(duration,
         dt,
         src_size,
         dest_size,
         interval,
         initial_dopamine,
         func_da,
         input_pattern,
         n_params,
         s_params,
         trace_alpha=0.1,
         regularize=None,
         plot_change=False):

    src = InputPopulation(src_size, LIF, **n_params)
    src.encode(input_pattern, duration, interval)

    n_params["current"] = list(np.zeros(duration // dt))
    n_params["regularize"] = regularize
    dest = Population(dest_size, LIF, trace_alpha=trace_alpha, **n_params)

    conn = Connection(src, dest).apply(**s_params)

    net = Network(populations=[src, dest], connections=[conn], time_step=dt)
    net.set_dopamine(initial_dopamine, func_da)
    net.run(duration, learning_rule="rstdp")

    # raster_plot(src.spikes_per_neuron)
    # raster_plot(dest.spikes_per_neuron)

    print(conn.weight_in_time[-1])
    plot_weight_matrix(conn.weight_in_time[-1])
    if plot_change:
        plot_weight_change(conn.weight_in_time)
Esempio n. 3
0
def q1_full():
    duration = 20
    dt = 0.1
    neuron_params = {
        'r': 5,
        'tau': 8,
        'threshold': -60,
        'current': current_generator(duration, dt, [(4, 5), (4, 5)])
    }
    pop = Population(1000, LIF, exc_ratio=0.8, **neuron_params)
    conn = Connection(pop, pop).apply("full", mu=0.2, sigma=0.1)
    sim = Network(populations=[pop], connections=[conn], time_step=dt)
    sim.run(duration)
    print(pop.spikes_per_neuron.shape)
    colors = [
        'inh' if pop.neurons[int(p[0])].is_inh else 'exc'
        for p in pop.spikes_per_neuron
    ]
    raster_plot(pop.spikes_per_neuron, colors=colors)
Esempio n. 4
0
def main(trial_no,
         duration,
         dt,
         population_size,
         n,
         input_size,
         output_size,
         interval,
         initial_dopamine,
         func_da,
         neuron_params,
         rstdp_params,
         output_current=None):

    inp = InputPopulation(input_size, LIF, **neuron_params)
    input_pattern = []
    for i in range(n):
        input_pattern.append(np.random.randint(0, 5, input_size))
    inp.encode(input_pattern, duration, interval, dt)
    if output_current is not None:
        neuron_params["current"] = output_current * np.ones(duration // dt)
    outs = []
    # neuron_params["regularize"] = True
    for i in range(n):
        outs.append(
            Population(output_size, LIF, trace_alpha=0, **neuron_params))
    pop = Population(population_size,
                     LIF,
                     input_part=inp,
                     output_part=outs,
                     exc_ratio=0.8,
                     trace_alpha=0,
                     **neuron_params)

    conn = Connection(pop, pop, weight_change=False).apply(**rstdp_params)

    net = Network(populations=[pop], connections=[conn], time_step=dt)
    net.set_dopamine(initial_dopamine, func_da)
    net.run(duration, learning_rule="rstdp")
    inp.compute_spike_history()
    raster_plot(np.array(inp.spikes_per_neuron))
    activity_plot([out.activity for out in outs],
                  save_to="./q2trial{}.png".format(trial_no))
def random_current_test(Neuron, current_range, time_window, dt,
                        **neuron_params):
    plot_name = f"./tests/phase1/{neuron_params}_{time_window}_randomCurrent.png"
    lif = Neuron(current=current_generator(time_window, dt, current_range),
                 **neuron_params)
    simulate = Network(lif, dt)
    current_list, time_list = simulate.run(time_window)
    plot_firing_pattern(lif.potential_list,
                        current_list,
                        time_list,
                        lif.u_rest,
                        lif.threshold,
                        save_to=plot_name)
def constant_current_test(Neuron, current_values, time_window, dt,
                          **neuron_params):
    firing_patterns = []
    f_i_curve_name = f"./tests/phase1/gain_function_{neuron_params}.png"
    for current_value in current_values:
        plot_name = f"./tests/phase1/{neuron_params}_{time_window}_{current_value}.png"
        lif = Neuron(current=current_generator(time_window, dt, current_value),
                     **neuron_params)
        simulate = Network(lif, dt)
        current_list, time_list = simulate.run(time_window)
        firing_patterns.append(lif.spike_times)
        plot_firing_pattern(lif.potential_list,
                            current_list,
                            time_list,
                            lif.u_rest,
                            lif.threshold,
                            save_to=plot_name)
    plot_f_i_curve(firing_patterns,
                   time_window,
                   current_values,
                   save_to=f_i_curve_name)
Esempio n. 7
0
         mu=1.25,
         sigma=0.1,
         delay=0,
         **stdp_params)
conn.add([-1], [0, 1], mu=0.8, sigma=0.1, delay=0, **stdp_params)

weight_matrix = np.zeros((input_pop.size, output_pop.size))
for syn in conn.synapses:
    weight_matrix[input_pop.neurons.index(syn.pre),
                  output_pop.neurons.index(syn.post)] = syn.w
print(weight_matrix)

sim = Network(populations=[input_pop, output_pop],
              connections=[conn],
              time_step=dt)
sim.run(duration, learning_rule="stdp")

for syn in conn.synapses:
    weight_matrix[input_pop.neurons.index(syn.pre),
                  output_pop.neurons.index(syn.post)] = syn.w
# print(syn.pre.name, "--{}-->".format(syn.w), syn.post.name)

print(weight_matrix)

# for neuron in input_pop.neurons:
#     print(neuron.current_list)
#
# for i in range(0, 10):
#     print(
#         input_pop.spikes_per_neuron[input_pop.spikes_per_neuron[:, 0] == i, 1])
#