Esempio n. 1
0
def create_preact_resnet(depth=200):
    '''Resnet with the batchnorm and relu moved to before the conv layer for each block'''
    net = ffnet.FeedForwardNet()
    net.add(
        Conv2D('input-conv',
               64,
               7,
               2,
               pad=3,
               use_bias=False,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input-bn'))
    net.add(Activation('input_relu'))
    net.add(MaxPooling2D('input_pool', 3, 2, pad=1))
    conf = cfg[depth]
    if depth > 34:
        stage(0, net, conf[0], 64, 64, 256, 1, bottleneck, preact=True)
        stage(1, net, conf[1], 256, 128, 512, 2, bottleneck, preact=True)
        stage(2, net, conf[2], 512, 256, 1024, 2, bottleneck, preact=True)
        stage(3, net, conf[3], 1024, 512, 2048, 2, bottleneck, preact=True)
    else:
        stage(0, net, conf[0], 64, 64, 64, 1, basicblock, preact=True)
        stage(1, net, conf[1], 64, 128, 128, 2, basicblock, preact=True)
        stage(2, net, conf[2], 128, 256, 256, 2, basicblock, preact=True)
        stage(3, net, conf[3], 256, 512, 512, 2, basicblock, preact=True)
    net.add(BatchNormalization('final-bn'))
    net.add(Activation('final-relu'))
    net.add(AvgPooling2D('avg', 7, 1, pad=0))
    net.add(Flatten('flat'))
    net.add(Dense('dense', 1000))
    return net
Esempio n. 2
0
def create_net(depth, nb_classes, batchnorm=False, use_cpu=False):
    if use_cpu:
        layer.engine = 'singacpp'
    net = ffnet.FeedForwardNet()
    net = create_layers(net, cfg[depth], (3, 224, 224), batchnorm)
    net.add(Flatten('flat'))
    net.add(Dense('dense/classifier.0', 4096))
    net.add(Activation('act/classifier.1'))
    net.add(Dropout('dropout/classifier.2'))
    net.add(Dense('dense/classifier.3', 4096))
    net.add(Activation('act/classifier.4'))
    net.add(Dropout('dropout/classifier.5'))
    net.add(Dense('dense/classifier.6', nb_classes))
    return net
Esempio n. 3
0
def add_dense_connected_layers(name, net, growth_rate):
    net.add(BatchNormalization('%s/bn1' % name))
    net.add(Activation('%s/relu1' % name))
    net.add(
        Conv2D('%s/conv1' % name,
               4 * growth_rate,
               1,
               1,
               pad=0,
               use_bias=conv_bias))
    net.add(BatchNormalization('%s/bn2' % name))
    net.add(Activation('%s/relu2' % name))
    return net.add(
        Conv2D('%s/conv2' % name, growth_rate, 3, 1, pad=1,
               use_bias=conv_bias))
Esempio n. 4
0
def create_resnet(depth=18):
    '''Original resnet, where the there is a relue after the addition layer'''
    net = ffnet.FeedForwardNet()
    net.add(
        Conv2D('input-conv',
               64,
               7,
               2,
               pad=3,
               use_bias=False,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input-bn'))
    net.add(Activation('input_relu'))
    net.add(MaxPooling2D('input_pool', 3, 2, pad=1))
    conf = cfg[depth]
    if depth > 34:
        stage(0, net, conf[0], 64, 64, 256, 1, bottleneck)
        stage(1, net, conf[1], 256, 128, 512, 2, bottleneck)
        stage(2, net, conf[2], 512, 256, 1024, 2, bottleneck)
        stage(3, net, conf[3], 1024, 512, 2048, 2, bottleneck)
    else:
        stage(0, net, conf[0], 64, 64, 64, 1, basicblock)
        stage(1, net, conf[1], 64, 128, 128, 2, basicblock)
        stage(2, net, conf[2], 128, 256, 256, 2, basicblock)
        stage(3, net, conf[3], 256, 512, 512, 2, basicblock)
    net.add(AvgPooling2D('avg', 7, 1, pad=0))
    net.add(Flatten('flat'))
    net.add(Dense('dense', 1000))
    return net
Esempio n. 5
0
def conv2d(net, name, nb_filter, k, s=1, border_mode='SAME', src=None):
    if type(k) is list:
        k = (k[0], k[1])
    net.add(
        Conv2D(name, nb_filter, k, s, border_mode=border_mode, use_bias=False),
        src)
    net.add(BatchNormalization('%s/BatchNorm' % name))
    return net.add(Activation(name + '/relu'))
Esempio n. 6
0
def bottleneck(name,
               net,
               inplane,
               midplane,
               outplane,
               stride=1,
               preact=False,
               add_bn=False):
    '''Add three conv layers, with a>=b<=c filters.

    The default structure is
    input
         -split - conv1-bn1-relu1-conv2-bn2-relu2-conv3-bn3
                - conv-bn or dummy
         -add
         -relu

    Args:
        inplane, num of feature maps of the input
        midplane, num of featue maps of the middle layer
        outplane, num of feature maps of the output
        preact, if true, move the bn3 and relu before conv1, i.e., pre-activation ref identity mapping paper
        add_bn, if true, move the last bn after the addition layer (for resnet-50)
    '''
    assert not (
        preact and add_bn
    ), 'preact and batchnorm after addition cannot be true at the same time'
    split = net.add(Split(name + '-split', 2))
    if preact:
        net.add(BatchNormalization(name + '-preact-bn'))
        net.add(Activation(name + '-preact-relu'))
    conv(net, name + '-0', midplane, 1, 1, 0, True, True)
    conv(net, name + '-1', midplane, 3, stride, 1, True, True)
    br0 = conv(net, name + '-2', outplane, 1, 1, 0, not (preact or add_bn),
               False)
    br1 = shortcut(net, name, inplane, outplane, stride, split, not add_bn)
    ret = net.add(Merge(name + '-add'), [br0, br1])
    if add_bn:
        ret = net.add(BatchNormalization(name + '-add-bn'))
    if not preact:
        ret = net.add(Activation(name + '-add-relu'))
    return ret
Esempio n. 7
0
def densenet_base(depth, growth_rate=32, reduction=0.5):
    '''
        rewrite according to pytorch models
        special case of densenet 161
    '''
    if depth == 121:
        stages = [6, 12, 24, 16]
    elif depth == 169:
        stages = [6, 12, 32, 32]
    elif depth == 201:
        stages = [6, 12, 48, 32]
    elif depth == 161:
        stages = [6, 12, 36, 24]
    else:
        print('unknown depth: %d' % depth)
        sys.exit(-1)

    net = ffnet.FeedForwardNet()
    growth_rate = 48 if depth == 161 else 32
    n_channels = 2 * growth_rate

    net.add(
        Conv2D('input/conv',
               n_channels,
               7,
               2,
               pad=3,
               use_bias=conv_bias,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input/bn'))
    net.add(Activation('input/relu'))
    net.add(MaxPooling2D('input/pool', 3, 2, pad=1))

    # Dense-Block 1 and transition (56x56)
    n_channels = add_block('block1', net, n_channels, stages[0], growth_rate)
    add_transition('trans1', net, int(math.floor(n_channels * reduction)))
    n_channels = math.floor(n_channels * reduction)

    # Dense-Block 2 and transition (28x28)
    n_channels = add_block('block2', net, n_channels, stages[1], growth_rate)
    add_transition('trans2', net, int(math.floor(n_channels * reduction)))
    n_channels = math.floor(n_channels * reduction)

    # Dense-Block 3 and transition (14x14)
    n_channels = add_block('block3', net, n_channels, stages[2], growth_rate)
    add_transition('trans3', net, int(math.floor(n_channels * reduction)))
    n_channels = math.floor(n_channels * reduction)

    # Dense-Block 4 and transition (7x7)
    n_channels = add_block('block4', net, n_channels, stages[3], growth_rate)
    add_transition('trans4', net, n_channels, True)

    return net
Esempio n. 8
0
def add_transition(name, net, n_channels, last=False):
    net.add(BatchNormalization('%s/norm' % name))
    lyr = net.add(Activation('%s/relu' % name))
    if last:
        net.add(
            AvgPooling2D('%s/pool' % name,
                         lyr.get_output_sample_shape()[1:3],
                         pad=0))
        net.add(Flatten('flat'))
    else:
        net.add(
            Conv2D('%s/conv' % name,
                   n_channels,
                   1,
                   1,
                   pad=0,
                   use_bias=conv_bias))
        net.add(AvgPooling2D('%s/pool' % name, 2, 2, pad=0))
Esempio n. 9
0
def conv(net, prefix, n, ksize, stride=1, pad=0, bn=True, relu=True, src=None):
    '''Add a convolution layer and optionally a batchnorm and relu layer.

    Args:
        prefix, a string for the prefix of the layer name
        n, num of filters for the conv layer
        bn, if true add batchnorm
        relu, if true add relu

    Returns:
        the last added layer
    '''
    ret = net.add(
        Conv2D(prefix + '-conv', n, ksize, stride, pad=pad,
               use_bias=conv_bias), src)
    if bn:
        ret = net.add(BatchNormalization(prefix + '-bn'))
    if relu:
        ret = net.add(Activation(prefix + '-relu'))
    return ret
Esempio n. 10
0
def create_layers(net, cfg, sample_shape, batch_norm=False):
    lid = 0
    for idx, v in enumerate(cfg):
        if v == 'M':
            net.add(MaxPooling2D('pool/features.%d' % lid, 2, 2, pad=0))
            lid += 1
        else:
            net.add(
                Conv2D('conv/features.%d' % lid,
                       v,
                       3,
                       pad=1,
                       input_sample_shape=sample_shape))
            lid += 1
            if batch_norm:
                net.add(BatchNormalization('bn/features.%d' % lid))
                lid += 1
            net.add(Activation('act/features.%d' % lid))
            lid += 1
        sample_shape = None
    return net
Esempio n. 11
0
def create_net(shape, weight_path='bvlc_googlenet.pickle'):
    net = ffnet.FeedForwardNet()
    net.add(Conv2D('conv1/7x7_s2', 64, 7, 2, pad=3, input_sample_shape=shape))
    c1 = net.add(Activation('conv1/relu_7x7'))
    pool1 = pool(net, c1, 'pool1/3x3_s2', 3, 2)
    norm1 = net.add(LRN('pool1/norm1', 5, 0.0001, 0.75))
    c3x3r = conv(net, norm1, 'conv2', 64, 1, suffix='3x3_reduce')
    c3x3 = conv(net, c3x3r, 'conv2', 192, 3, pad=1, suffix='3x3')
    norm2 = net.add(LRN('conv2/norm2', 5, 0.0001, 0.75))
    pool2 = pool(net, norm2, 'pool2/3x3_s2', 3, 2)

    i3a = inception(net, pool2, 'inception_3a', 64, 96, 128, 16, 32, 32)
    i3b = inception(net, i3a, 'inception_3b', 128, 128, 192, 32, 96, 64)
    pool3 = pool(net, i3b, 'pool3/3x3_s2', 3, 2)
    i4a = inception(net, pool3, 'inception_4a', 192, 96, 208, 16, 48, 64)
    i4b = inception(net, i4a, 'inception_4b', 160, 112, 224, 24, 64, 64)
    i4c = inception(net, i4b, 'inception_4c', 128, 128, 256, 24, 64, 64)
    i4d = inception(net, i4c, 'inception_4d', 112, 144, 288, 32, 64, 64)
    i4e = inception(net, i4d, 'inception_4e', 256, 160, 320, 32, 128, 128)
    pool4 = pool(net, i4e, 'pool4/3x3_s2', 3, 2)
    i5a = inception(net, pool4, 'inception_5a', 256, 160, 320, 32, 128, 128)
    i5b = inception(net, i5a, 'inception_5b', 384, 192, 384, 48, 128, 128)
    pool5 = net.add(AvgPooling2D('pool5/7x7_s1', 7, 1, pad=0))
    drop5 = net.add(Dropout('drop', 0.4))
    flat = net.add(Flatten('flat'))
    dense = net.add(Dense('loss3/classifier', 1000))
    # prob=net.add(Softmax('softmax'))

    net.load(weight_path, use_pickle=True)
    print('total num of params %d' % (len(net.param_names())))
    # SINGA and Caffe have different layout for the weight matrix of the dense
    # layer
    for key, val in zip(net.param_names(), net.param_values()):
        # print key
        if key == 'loss3/classifier_weight' or key == 'loss3/classifier/weight':
            tmp = tensor.to_numpy(val)
            tmp = tmp.reshape(tmp.shape[::-1])
            val.copy_from_numpy(np.transpose(tmp))
    return net
Esempio n. 12
0
def create_wide_resnet(depth=50):
    '''Similar original resnet except that a<=b<=c for the bottleneck block'''
    net = ffnet.FeedForwardNet()
    net.add(
        Conv2D('input-conv',
               64,
               7,
               2,
               pad=3,
               use_bias=False,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input-bn'))
    net.add(Activation('input_relu'))
    net.add(MaxPooling2D('input_pool', 3, 2, pad=1))

    stage(0, net, 3, 64, 128, 256, 1, bottleneck)
    stage(1, net, 4, 256, 256, 512, 2, bottleneck)
    stage(2, net, 6, 512, 512, 1024, 2, bottleneck)
    stage(3, net, 3, 1024, 1024, 2048, 2, bottleneck)

    net.add(AvgPooling2D('avg_pool', 7, 1, pad=0))
    net.add(Flatten('flag'))
    net.add(Dense('dense', 1000))
    return net
Esempio n. 13
0
def conv(net, src, name, num, kernel, stride=1, pad=0, suffix=''):
    net.add(Conv2D('%s/%s' % (name, suffix), num, kernel, stride, pad=pad),
            src)
    return net.add(Activation('%s/relue_%s' % (name, suffix)))
Esempio n. 14
0
def inception_v3_base(name,
                      sample_shape,
                      final_endpoint,
                      aux_endpoint,
                      depth_multiplier=1,
                      min_depth=16):
    """Creates the Inception V3 network up to the given final endpoint.

    Args:
        sample_shape: input image sample shape, 3d tuple
        final_endpoint: specifies the endpoint to construct the network up to.
        aux_endpoint: for aux loss.

    Returns:
        logits: the logits outputs of the model.
        end_points: the set of end_points from the inception model.

    Raises:
        ValueError: if final_endpoint is not set to one of the predefined values
    """
    V3 = 'InceptionV3'
    end_points = {}
    net = ffnet.FeedForwardNet()

    def final_aux_check(block_name):
        if block_name == final_endpoint:
            return True
        if block_name == aux_endpoint:
            aux = aux_endpoint + '-aux'
            end_points[aux] = net.add(Split(aux, 2))
        return False

    def depth(d):
        return max(int(d * depth_multiplier), min_depth)

    blk = V3 + '/Conv2d_1a_3x3'
    # 299 x 299 x 3
    net.add(
        Conv2D(blk,
               depth(32),
               3,
               2,
               border_mode='VALID',
               use_bias=False,
               input_sample_shape=sample_shape))
    net.add(BatchNormalization(blk + '/BatchNorm'))
    end_points[blk] = net.add(Activation(blk + '/relu'))
    if final_aux_check(blk):
        return net, end_points

    # 149 x 149 x 32
    conv2d(net, '%s/Conv2d_2a_3x3' % V3, depth(32), 3, border_mode='VALID')
    # 147 x 147 x 32
    conv2d(net, '%s/Conv2d_2b_3x3' % V3, depth(64), 3)
    # 147 x 147 x 64
    net.add(MaxPooling2D('%s/MaxPool_3a_3x3' % V3, 3, 2, border_mode='VALID'))
    # 73 x 73 x 64
    conv2d(net, '%s/Conv2d_3b_1x1' % V3, depth(80), 1, border_mode='VALID')
    # 73 x 73 x 80.
    conv2d(net, '%s/Conv2d_4a_3x3' % V3, depth(192), 3, border_mode='VALID')
    # 71 x 71 x 192.
    net.add(MaxPooling2D('%s/MaxPool_5a_3x3' % V3, 3, 2, border_mode='VALID'))

    # 35 x 35 x 192.
    blk = V3 + '/Mixed_5b'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(48), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_5x5' % blk, depth(64), 5)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(96), 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, depth(96), 3)
    net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(32), 1)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_1: 35 x 35 x 288.
    blk = V3 + '/Mixed_5c'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x1' % blk, depth(48), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv_1_0c_5x5' % blk, depth(64), 5)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(96), 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, depth(96), 3)
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1),
                  src=s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(64), 1)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_2: 35 x 35 x 288.
    blk = V3 + '/Mixed_5d'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(48), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_5x5' % blk, depth(64), 5)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(96), 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, depth(96), 3)
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(64), 1)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_3: 17 x 17 x 768.
    blk = V3 + '/Mixed_6a'
    s = net.add(Split('%s/Split' % blk, 3))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_1a_1x1' % blk,
                 depth(384),
                 3,
                 2,
                 border_mode='VALID',
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_3x3' % blk, depth(96), 3)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_1a_1x1' % blk,
                 depth(96),
                 3,
                 2,
                 border_mode='VALID')
    br2 = net.add(
        MaxPooling2D('%s/Branch_2/MaxPool_1a_3x3' % blk,
                     3,
                     2,
                     border_mode='VALID'), s)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2])
    if final_aux_check(blk):
        return net, end_points

    # mixed4: 17 x 17 x 768.
    blk = V3 + '/Mixed_6b'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(192), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(128), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(128), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(128), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(128), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(128), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(128), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_5: 17 x 17 x 768.
    blk = V3 + '/Mixed_6c'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(160), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(160), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_6: 17 x 17 x 768.
    blk = V3 + '/Mixed_6d'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(160), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(160), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    blk = V3 + '/Mixed_6e'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(192), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(192), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_8: 8 x 8 x 1280.
    blk = V3 + '/Mixed_7a'
    s = net.add(Split('%s/Split' % blk, 3))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_1a_3x3' % blk,
                 depth(320), [3, 3],
                 2,
                 border_mode='VALID')
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(192), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_1a_3x3' % blk,
                 depth(192), [3, 3],
                 2,
                 border_mode='VALID')
    br2 = net.add(
        MaxPooling2D('%s/Branch_2/MaxPool_1a_3x3' % blk,
                     3,
                     2,
                     border_mode='VALID'), s)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2])
    if final_aux_check(blk):
        return net, end_points

    # mixed_9: 8 x 8 x 2048.
    blk = V3 + '/Mixed_7b'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(320), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(384), 1, src=s)
    s1 = net.add(Split('%s/Branch_1/Split1' % blk, 2))
    br11 = conv2d(net,
                  '%s/Branch_1/Conv2d_0b_1x3' % blk,
                  depth(384), [1, 3],
                  src=s1)
    br12 = conv2d(net,
                  '%s/Branch_1/Conv2d_0b_3x1' % blk,
                  depth(384), [3, 1],
                  src=s1)
    br1 = net.add(Concat('%s/Branch_1/Concat1' % blk, 1), [br11, br12])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(448), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(384), 3)
    s2 = net.add(Split('%s/Branch_2/Split2' % blk, 2))
    br21 = conv2d(net,
                  '%s/Branch_2/Conv2d_0c_1x3' % blk,
                  depth(384), [1, 3],
                  src=s2)
    br22 = conv2d(net,
                  '%s/Branch_2/Conv2d_0d_3x1' % blk,
                  depth(384), [3, 1],
                  src=s2)
    br2 = net.add(Concat('%s/Branch_2/Concat2' % blk, 1), [br21, br22])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1),
                  src=s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_10: 8 x 8 x 2048.
    blk = V3 + '/Mixed_7c'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(320), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(384), 1, src=s)
    s1 = net.add(Split('%s/Branch_1/Split1' % blk, 2))
    br11 = conv2d(net,
                  '%s/Branch_1/Conv2d_0b_1x3' % blk,
                  depth(384), [1, 3],
                  src=s1)
    br12 = conv2d(net,
                  '%s/Branch_1/Conv2d_0c_3x1' % blk,
                  depth(384), [3, 1],
                  src=s1)
    br1 = net.add(Concat('%s/Branch_1/Concat1' % blk, 1), [br11, br12])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(448), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(384), [3, 3])
    s2 = net.add(Split('%s/Branch_2/Split2' % blk, 2))
    br21 = conv2d(net,
                  '%s/Branch_2/Conv2d_0c_1x3' % blk,
                  depth(384), [1, 3],
                  src=s2)
    br22 = conv2d(net,
                  '%s/Branch_2/Conv2d_0d_3x1' % blk,
                  depth(384), [3, 1],
                  src=s2)
    br2 = net.add(Concat('%s/Branch_2/Concat2' % blk, 1), [br21, br22])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1),
                  src=s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    assert final_endpoint == blk, \
        'final_enpoint = %s is not in the net' % final_endpoint
    return net, end_points
Esempio n. 15
0
def inception_v4_base(sample_shape,
                      final_endpoint='Inception/Mixed_7d',
                      aux_endpoint='Inception/Mixed_6e'):
    """Creates the Inception V4 network up to the given final endpoint.

    Endpoint name list: 'InceptionV4/' +
        ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
        'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
        'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e',
        'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c',
        'Mixed_7d']

    Args:
        sample_shape: input image sample shape, 3d tuple
        final_endpoint: specifies the endpoint to construct the network up to.
        aux_endpoint: for aux loss.

    Returns:
        the neural net
        the set of end_points from the inception model.
    """
    name = 'InceptionV4'
    end_points = {}
    net = ffnet.FeedForwardNet()

    def final_aux_check(block_name):
        if block_name == final_endpoint:
            return True
        if block_name == aux_endpoint:
            aux = aux_endpoint + '-aux'
            end_points[aux] = net.add(Split(aux, 2))
        return False

    # 299 x 299 x 3
    blk = name + '/Conv2d_1a_3x3'
    net.add(
        Conv2D(blk,
               32,
               3,
               2,
               border_mode='VALID',
               use_bias=False,
               input_sample_shape=sample_shape))
    net.add(BatchNormalization('%s/BatchNorm' % blk))
    end_points[blk] = net.add(Activation('%s/relu' % blk))
    if final_aux_check(blk):
        return net, end_points

    # 149 x 149 x 32
    blk = name + '/Conv2d_2a_3x3'
    end_points[blk] = conv2d(net, blk, 32, 3, border_mode='VALID')
    if final_aux_check(blk):
        return net, end_points

    # 147 x 147 x 32
    blk = name + '/Conv2d_2b_3x3'
    end_points[blk] = conv2d(net, blk, 64, 3)
    if final_aux_check(blk):
        return net, end_points

    # 147 x 147 x 64
    blk = name + '/Mixed_3a'
    s = net.add(Split('%s/Split' % blk, 2))
    br0 = net.add(
        MaxPooling2D('%s/Branch_0/MaxPool_0a_3x3' % blk,
                     3,
                     2,
                     border_mode='VALID'), s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_3x3' % blk,
                 96,
                 3,
                 2,
                 border_mode='VALID',
                 src=s)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1])
    if final_aux_check(blk):
        return net, end_points

    # 73 x 73 x 160
    blk = name + '/Mixed_4a'
    s = net.add(Split('%s/Split' % blk, 2))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, 64, 1, src=s)
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_1a_3x3' % blk,
                 96,
                 3,
                 border_mode='VALID')
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, 64, 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, 64, (1, 7))
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, 64, (7, 1))
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_1a_3x3' % blk,
                 96,
                 3,
                 border_mode='VALID')
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1])
    if final_aux_check(blk):
        return net, end_points

    # 71 x 71 x 192
    blk = name + '/Mixed_5a'
    s = net.add(Split('%s/Split' % blk, 2))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_1a_3x3' % blk,
                 192,
                 3,
                 2,
                 border_mode='VALID',
                 src=s)
    br1 = net.add(
        MaxPooling2D('%s/Branch_1/MaxPool_1a_3x3' % blk,
                     3,
                     2,
                     border_mode='VALID'), s)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1])
    if final_aux_check(blk):
        return net, end_points

    # 35 x 35 x 384
    # 4 x Inception-A blocks
    for idx in range(4):
        blk = name + '/Mixed_5' + chr(ord('b') + idx)
        end_points[blk] = block_inception_a(blk, net)
        if final_aux_check(blk):
            return net, end_points

    # 35 x 35 x 384
    # Reduction-A block
    blk = name + '/Mixed_6a'
    end_points[blk] = block_reduction_a(blk, net)
    if final_aux_check(blk):
        return net, end_points[blk], end_points

    # 17 x 17 x 1024
    # 7 x Inception-B blocks
    for idx in range(7):
        blk = name + '/Mixed_6' + chr(ord('b') + idx)
        end_points[blk] = block_inception_b(blk, net)
        if final_aux_check(blk):
            return net, end_points

    # 17 x 17 x 1024
    # Reduction-B block
    blk = name + '/Mixed_7a'
    end_points[blk] = block_reduction_b(blk, net)
    if final_aux_check(blk):
        return net, end_points

    # 8 x 8 x 1536
    # 3 x Inception-C blocks
    for idx in range(3):
        blk = name + '/Mixed_7' + chr(ord('b') + idx)
        end_points[blk] = block_inception_c(blk, net)
        if final_aux_check(blk):
            return net, end_points

    assert final_endpoint == blk, \
        'final_enpoint = %s is not in the net' % final_endpoint