Esempio n. 1
0
 def get_knob_config():
     return {
         'max_epochs': FixedKnob(10),
         'learning_rate': FloatKnob(1e-5, 1e-2, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
         'max_image_size': CategoricalKnob([32, 64, 128, 224]),
     }
Esempio n. 2
0
 def get_knob_config():
     return {
         'n_estimators': IntegerKnob(50, 200),
         'oob_score': CategoricalKnob([True, False]),
         'max_depth': IntegerKnob(10, 100),
         'max_features': CategoricalKnob(['auto', 'sqrt', 'log2'])
     }
Esempio n. 3
0
 def get_knob_config():
     return {
         'max_depth': IntegerKnob(1, 32),
         'splitter': CategoricalKnob(['best', 'random']),
         'criterion': CategoricalKnob(['gini', 'entropy']),
         'max_image_size': CategoricalKnob([16, 32])
     }
Esempio n. 4
0
 def get_knob_config():
     return {
         'epochs': FixedKnob(15),
         'batch_size': CategoricalKnob([32, 64, 128]),
         'l_rate': FloatKnob(0.0001, 0.001, 0.01),
         'max_image_size': CategoricalKnob([28, 32])
     }
Esempio n. 5
0
    def get_knob_config():
        return {
            'model_class': CategoricalKnob(['resnent101_mnist']),
            # Learning parameters
            'lr': FixedKnob(0.0001),  ### learning_rate
            'weight_decay': FixedKnob(0.0),
            'drop_rate': FixedKnob(0.0),
            'max_epochs': FixedKnob(30),
            'batch_size': CategoricalKnob([200]),
            'max_iter': FixedKnob(20),
            'optimizer': CategoricalKnob(['adam']),
            'scratch': FixedKnob(True),

            # Data augmentation
            'max_image_size': FixedKnob(32),
            'share_params': CategoricalKnob(['SHARE_PARAMS']),
            'tag': CategoricalKnob(['relabeled']),
            'workers': FixedKnob(8),
            'seed': FixedKnob(123456),
            'scale': FixedKnob(512),
            'horizontal_flip': FixedKnob(True),

            # Hyperparameters for PANDA modules
            # Self-paced Learning and Loss Revision
            'enable_spl': FixedKnob(False),
            'spl_threshold_init': FixedKnob(16.0),
            'spl_mu': FixedKnob(1.3),
            'enable_lossrevise': FixedKnob(False),
            'lossrevise_slop': FixedKnob(2.0),

            # Label Adaptation
            'enable_label_adaptation': FixedKnob(False),  # error occurs

            # GM Prior Regularization
            'enable_gm_prior_regularization': FixedKnob(True),
            'gm_prior_regularization_a': FixedKnob(0.001),
            'gm_prior_regularization_b': FixedKnob(0.0001),
            'gm_prior_regularization_alpha': FixedKnob(0.5),
            'gm_prior_regularization_num': FixedKnob(4),
            'gm_prior_regularization_lambda': FixedKnob(0.0001),
            'gm_prior_regularization_upt_freq': FixedKnob(100),
            'gm_prior_regularization_param_upt_freq': FixedKnob(50),

            # Explanation
            'enable_explanation': FixedKnob(False),
            'explanation_gradcam': FixedKnob(True),
            'explanation_lime': FixedKnob(False),

            # Model Slicing
            'enable_model_slicing': FixedKnob(True),
            'model_slicing_groups': FixedKnob(0),
            'model_slicing_rate': FixedKnob(1.0),
            'model_slicing_scheduler_type': FixedKnob('randomminmax'),
            'model_slicing_randnum': FixedKnob(1),

            # MC Dropout
            'enable_mc_dropout': FixedKnob(False),
            'mc_trials_n': FixedKnob(10)
        }
Esempio n. 6
0
 def get_knob_config():
     return {
         'max_iter': FixedKnob(20),
         'kernel': CategoricalKnob(['rbf', 'linear', 'poly']),
         'gamma': CategoricalKnob(['scale', 'auto']),
         'C': FloatKnob(1e-4, 1e4, is_exp=True),
         'max_image_size': CategoricalKnob([16, 32])
     }
Esempio n. 7
0
 def get_knob_config():
     return {
         'penalty': CategoricalKnob(['l1', 'l2']),
         'tol': FloatKnob(0.0001, 0.001),
         'C': IntegerKnob(4, 15),
         'fit_intercept': CategoricalKnob([True, False]),
         'solver': CategoricalKnob(['lbfgs', 'liblinear']),
     }
    def get_knob_config():
        return {
            # Learning parameters
            'lr': FixedKnob(0.0001),
            'weight_decay': FixedKnob(0.0),
            'drop_rate': FixedKnob(0.0),
            'max_epochs': FixedKnob(10),  # original 5
            'batch_size': CategoricalKnob([96]),  # original 32
            'max_iter': FixedKnob(20),
            'optimizer': CategoricalKnob(['adam']),
            'scratch': FixedKnob(True),

            # Data augmentation
            'max_image_size': FixedKnob(32),
            'share_params': CategoricalKnob(['SHARE_PARAMS']),
            'tag': CategoricalKnob(['relabeled']),
            'workers': FixedKnob(8),
            'seed': FixedKnob(123456),
            'scale': FixedKnob(512),
            'horizontal_flip': FixedKnob(True),

            # Self-paced Learning and Loss Revision
            'enable_spl': FixedKnob(True),
            'spl_threshold_init': FixedKnob(16.0),
            'spl_mu': FixedKnob(1.3),
            'enable_lossrevise': FixedKnob(False),
            'lossrevise_slop': FixedKnob(2.0),

            # Label Adaptation
            'enable_label_adaptation': FixedKnob(False),

            # GM Prior Regularization
            'enable_gm_prior_regularization': FixedKnob(False),
            'gm_prior_regularization_a': FixedKnob(0.001),
            'gm_prior_regularization_b': FixedKnob(0.0001),
            'gm_prior_regularization_alpha': FixedKnob(0.5),
            'gm_prior_regularization_num': FixedKnob(4),
            'gm_prior_regularization_lambda': FixedKnob(0.0001),
            'gm_prior_regularization_upt_freq': FixedKnob(100),
            'gm_prior_regularization_param_upt_freq': FixedKnob(50),

            # Explanation
            'enable_explanation': FixedKnob(False),
            'explanation_method': FixedKnob('lime'),

            # Model Slicing
            'enable_model_slicing': FixedKnob(False),
            'model_slicing_groups': FixedKnob(0),
            'model_slicing_rate': FixedKnob(1.0),
            'model_slicing_scheduler_type': FixedKnob('randomminmax'),
            'model_slicing_randnum': FixedKnob(1),

            # SelectiveNet
            'selectionheadloss_weight': FixedKnob(0.5),
            'target_coverage': FixedKnob(0.8),
            'lamda': FixedKnob(32)
        }
Esempio n. 9
0
 def get_knob_config():
     return {
         'alpha': FloatKnob(0.001, 0.01),
         'normalize': CategoricalKnob([True, False]),
         'copy_X': CategoricalKnob([True, False]),
         'tol': FloatKnob(1e-05, 1e-04),
         'solver': CategoricalKnob(['svd', 'sag']),
         'random_state': IntegerKnob(1, 123)
     }
Esempio n. 10
0
 def get_knob_config():
     return {
         'criterion': CategoricalKnob(['mse', 'mae']),
         'splitter': CategoricalKnob(['best', 'random']),
         'min_samples_split': IntegerKnob(2, 5),
         'max_features': CategoricalKnob(['auto', 'sqrt']),
         'random_state': IntegerKnob(1, 123),
         'min_impurity_decrease': FloatKnob(0.0, 0.2),
         'min_impurity_split': FloatKnob(1e-07, 1e-03)
     }
Esempio n. 11
0
 def get_knob_config():
     return {
         'max_epochs': FixedKnob(10),
         'hidden_layer_count': IntegerKnob(1, 2),
         'hidden_layer_units': IntegerKnob(2, 128),
         'learning_rate': FloatKnob(1e-5, 1e-1, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
         'max_image_size': CategoricalKnob([16, 32, 48]),
         'quick_train':
         PolicyKnob('EARLY_STOP')  # Whether early stopping would be used
     }
Esempio n. 12
0
 def get_knob_config():
     return {
         'C': IntegerKnob(2, 3),
         'kernel': CategoricalKnob(['poly', 'rbf', 'linear']),
         'degree': IntegerKnob(2, 3),
         'gamma': CategoricalKnob(['scale', 'auto']),
         'coef0': FloatKnob(0.0, 0.1),
         'shrinking': CategoricalKnob([True, False]),
         'tol': FloatKnob(1e-03, 1e-01, is_exp=True),
         'decision_function_shape': CategoricalKnob(['ovo', 'ovr']),
         'probability': CategoricalKnob([True, False]),
     }
Esempio n. 13
0
 def get_knob_config():
     return {
         'C': FloatKnob(1.0, 1.5),
         'tol': FloatKnob(1e-03, 1e-01, is_exp=True),
         'validation_fraction': FloatKnob(0.01, 0.1),
         'n_iter_no_change': IntegerKnob(3, 5),
         'shuffle': CategoricalKnob([True, False]),
         'loss': CategoricalKnob(['hinge', 'squared_hinge']),
         'random_state': IntegerKnob(1, 2),
         'warm_start': CategoricalKnob([True, False]),
         'average': IntegerKnob(1, 5),
     }
Esempio n. 14
0
 def get_knob_config():
     return {
         'epochs': FixedKnob(15),
         'learning_rate': FloatKnob(0.001, 0.07),
         'decay_rate': FloatKnob(5e-5, 1e-4, is_exp=True),
         'momentum': FloatKnob(0.1, 0.3, 0.6),
         'batch_size': CategoricalKnob([32, 64, 128]),
         'max_image_size': FixedKnob(28)
     }
Esempio n. 15
0
 def get_knob_config():
     return {
         'epochs': FixedKnob(1),
         'word_embed_dims': IntegerKnob(16, 128),
         'word_rnn_hidden_size': IntegerKnob(16, 128),
         'word_dropout': FloatKnob(1e-3, 2e-1, is_exp=True),
         'learning_rate': FloatKnob(1e-2, 1e-1, is_exp=True),
         'batch_size': CategoricalKnob([16, 32, 64, 128]),
     }
Esempio n. 16
0
    def get_knob_config():
        return {
            'trial_epochs': FixedKnob(300),
            'lr': FloatKnob(1e-4, 1, is_exp=True),
            'lr_decay': FloatKnob(1e-3, 1e-1, is_exp=True),
            'opt_momentum': FloatKnob(0.7, 1, is_exp=True),
            'opt_weight_decay': FloatKnob(1e-5, 1e-3, is_exp=True),
            'batch_size': CategoricalKnob([32, 64, 128]),
            'drop_rate': FloatKnob(0, 0.4),
            'max_image_size': FixedKnob(32),
            'share_params': PolicyKnob('SHARE_PARAMS'),

            # Affects whether training is shortened by using early stopping
            'quick_train': PolicyKnob('EARLY_STOP'),
            'early_stop_train_val_samples': FixedKnob(1024),
            'early_stop_patience_epochs': FixedKnob(5)
        }
Esempio n. 17
0
 def get_knob_config():
     return {
         'epoch': IntegerKnob(5, 10),
         'learning_rate': FloatKnob(1e-3, 1e-1, is_exp=True),
         'layer_dim': CategoricalKnob([50, 100, 250])
     }
Esempio n. 18
0
 def get_knob_config():
     return {
         'n_neighbors': IntegerKnob(3, 4, 6),
         'metric': CategoricalKnob(['minkowski', 'euclidean']),
         'p': IntegerKnob(1, 2),
     }