Esempio n. 1
0
 def test_set_sc(self):
     # Create new geometry with only the coordinates
     # and atoms
     s1 = SuperCell([2, 2, 2])
     g1 = Geometry([[0, 0, 0], [1, 1, 1]], sc=[2, 2, 1])
     g1.set_sc(s1)
     assert_true(g1.sc == s1)
Esempio n. 2
0
def hcp(a, atom, coa=1.63333, orthogonal=False):
    """
    Returns a geometry with the FCC crystal structure (1 atom)
    """
    # height of hcp structure
    c = a * coa
    a2sq = a / 2 ** .5
    if orthogonal:
        sc = SuperCell([[a + a * _c60 * 2, 0, 0],
                        [0, a * _c30 * 2, 0],
                        [0, 0, c / 2]])
        gt = Geometry([[0, 0, 0],
                       [a, 0, 0],
                       [a * _s30, a * _c30, 0],
                       [a * (1 + _s30), a * _c30, 0]], atom, sc=sc)
        # Create the rotated one on top
        gr = gt.copy()
        # mirror structure
        gr.xyz[0, 1] += sc.cell[1, 1]
        gr.xyz[1, 1] += sc.cell[1, 1]
        gr = gr.translate(-np.amin(gr.xyz, axis=0))
        # Now displace to get the correct offset
        gr = gr.translate([0, a * _s30 / 2, 0])
        g = gt.append(gr, 2)
    else:
        sc = SuperCell([a, a, c, 90, 90, 60],
                       nsc=[3, 3, 3])
        g = Geometry(
            [[0, 0, 0], [a2sq * _c30, a2sq * _s30, c / 2]], atom, sc=sc)
    return g
Esempio n. 3
0
    def setUp(self):
        bond = 1.42
        sq3h = 3.0 ** 0.5 * 0.5
        self.sc = SuperCell(
            np.array([[1.5, sq3h, 0.0], [1.5, -sq3h, 0.0], [0.0, 0.0, 10.0]], np.float64) * bond, nsc=[3, 3, 1]
        )
        C = Atom(Z=6, R=bond * 1.01, orbs=2)
        self.g = Geometry(np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], np.float64) * bond, atom=C, sc=self.sc)

        self.mol = Geometry([[i, 0, 0] for i in range(10)], sc=[50])
Esempio n. 4
0
        def __init__(self):
            bond = 1.42
            sq3h = 3.**.5 * 0.5
            self.sc = SuperCell(
                np.array([[1.5, sq3h, 0.], [1.5, -sq3h, 0.], [0., 0., 10.]],
                         np.float64) * bond,
                nsc=[3, 3, 1])

            C = Atom(Z=6, R=[bond * 1.01] * 3)
            self.g = Geometry(
                np.array([[0., 0., 0.], [1., 0., 0.]], np.float64) * bond,
                atom=C,
                sc=self.sc)
            self.D = DynamicalMatrix(self.g)

            def func(D, ia, idxs, idxs_xyz):
                idx = D.geometry.close(ia,
                                       R=(0.1, 1.44),
                                       idx=idxs,
                                       idx_xyz=idxs_xyz)
                ia = ia * 3

                i0 = idx[0] * 3
                i1 = idx[1] * 3
                # on-site
                p = 1.
                D.D[ia, i0] = p
                D.D[ia + 1, i0 + 1] = p
                D.D[ia + 2, i0 + 2] = p

                # nn
                p = 0.1

                # on-site directions
                D.D[ia, ia + 1] = p
                D.D[ia, ia + 2] = p
                D.D[ia + 1, ia] = p
                D.D[ia + 1, ia + 2] = p
                D.D[ia + 2, ia] = p
                D.D[ia + 2, ia + 1] = p

                D.D[ia, i1 + 1] = p
                D.D[ia, i1 + 2] = p

                D.D[ia + 1, i1] = p
                D.D[ia + 1, i1 + 2] = p

                D.D[ia + 2, i1] = p
                D.D[ia + 2, i1 + 1] = p

            self.func = func
Esempio n. 5
0
File: pdb.py Progetto: silsgs/sisl
    def read_geometry(self):
        """ Read geometry from the contained file """

        # First we read in the geometry
        sc = self.read_supercell()

        # Try and go to the first model record
        in_model, l = self._step_record('MODEL')

        idx = []
        tags = []
        xyz = []
        Z = []
        if in_model:
            l = self.readline()

            def is_atom(line):
                return l.startswith('ATOM') or l.startswith('HETATM')

            def is_end_model(line):
                return l.startswith('ENDMDL') or l == ''

            while not is_end_model(l):
                if is_atom(l):
                    idx.append(int(l[6:11]))
                    tags.append(l[12:16].strip())
                    xyz.append(
                        [float(l[30:38]),
                         float(l[38:46]),
                         float(l[46:54])])
                    Z.append(l[76:78].strip())
                l = self.readline()

        # First sort all atoms according to the idx array
        idx = np.array(idx)
        idx = np.argsort(idx)
        xyz = np.array(xyz)[idx, :]
        tags = [tags[i] for i in idx]
        Z = [Z[i] for i in idx]

        # Create the atom list
        atoms = Atoms(Atom(Z[0], tag=tags[0]), na=len(Z))
        for i, a in enumerate(map(Atom, Z, tags)):
            try:
                s = atoms.index(a)
            except:
                s = len(atoms.atom)
                atoms._atom.append(a)
            atoms._specie[i] = s

        return Geometry(xyz, atoms, sc=sc)
Esempio n. 6
0
File: flat.py Progetto: sjumzw/sisl
def honeycomb(bond, atom, orthogonal=False):
    """ Honeycomb lattice with 2 or 4 atoms per unit-cell, latter orthogonal cell

    This enables creating BN lattices with ease, or graphene lattices.

    Parameters
    ----------
    bond : float
        bond length between atoms (*not* lattice constant)
    atom : Atom
        the atom (or atoms) that the honeycomb lattice consists of
    orthogonal : bool, optional
        if True returns an orthogonal lattice

    See Also
    --------
    graphene: the equivalent of this, but with default of Carbon atoms
    bilayer: create bilayer honeycomb lattices
    """
    sq3h = 3.**.5 * 0.5
    if orthogonal:
        sc = SuperCell(np.array(
            [[3., 0., 0.], [0., 2 * sq3h, 0.], [0., 0., 10.]], np.float64) *
                       bond,
                       nsc=[3, 3, 1])
        g = Geometry(np.array([[0., 0., 0.], [0.5, sq3h, 0.], [1.5, sq3h, 0.],
                               [2., 0., 0.]], np.float64) * bond,
                     atom,
                     sc=sc)
    else:
        sc = SuperCell(np.array(
            [[1.5, sq3h, 0.], [1.5, -sq3h, 0.], [0., 0., 10.]], np.float64) *
                       bond,
                       nsc=[3, 3, 1])
        g = Geometry(np.array([[0., 0., 0.], [1., 0., 0.]], np.float64) * bond,
                     atom,
                     sc=sc)
    return g
Esempio n. 7
0
def test_wavefunction2():
    N = 50
    o1 = SphericalOrbital(
        0, (np.linspace(0, 2, N), np.exp(-np.linspace(0, 100, N))))
    G = Geometry([[1] * 3, [2] * 3], Atom(6, o1), sc=[4, 4, 4])
    H = Hamiltonian(G)
    R, param = [0.1, 1.5], [1., 0.1]
    H.construct([R, param])
    ES = H.eigenstate(dtype=np.float64)
    # This is effectively plotting outside where no atoms exists
    # (there could however still be psi weight).
    grid = Grid(0.1, sc=SuperCell([2, 2, 2], origo=[2] * 3))
    grid.fill(0.)
    ES.sub(0).wavefunction(grid)
Esempio n. 8
0
def honeycomb(bond, atom, orthogonal=False):
    """
    Returns a honeycomb geometry with the graphene unit-cell (2 atoms)
    """
    sq3h = 3.**.5 * 0.5
    if orthogonal:
        sc = SuperCell(np.array(
            [[3., 0., 0.], [0., 2 * sq3h, 0.], [0., 0., 10.]], np.float64) *
                       bond,
                       nsc=[3, 3, 1])
        g = Geometry(np.array([[0., 0., 0.], [0.5, sq3h, 0.], [1.5, sq3h, 0.],
                               [2., 0., 0.]], np.float64) * bond,
                     atom,
                     sc=sc)
    else:
        sc = SuperCell(np.array(
            [[1.5, sq3h, 0.], [1.5, -sq3h, 0.], [0., 0., 10.]], np.float64) *
                       bond,
                       nsc=[3, 3, 1])
        g = Geometry(np.array([[0., 0., 0.], [1., 0., 0.]], np.float64) * bond,
                     atom,
                     sc=sc)
    return g
Esempio n. 9
0
    def _r_geometry_ase(self, na, header, sp, xyz, sc):
        """ Read the geometry as though it was created with ASE """
        # Convert F T to nsc
        #  F = 1
        #  T = 3
        nsc = list(
            map(lambda x: "FT".index(x) * 2 + 1,
                header.pop("pbc").strip('"').split()))
        cell = _a.fromiterd(header.pop("Lattice").strip('"').split()).reshape(
            3, 3)
        if sc is None:
            sc = SuperCell(cell, nsc=nsc)

        return Geometry(xyz, atoms=sp, sc=sc)
Esempio n. 10
0
        def __init__(self):
            bond = 1.42
            sq3h = 3.**.5 * 0.5
            self.sc = SuperCell(
                np.array([[1.5, sq3h, 0.], [1.5, -sq3h, 0.], [0., 0., 10.]],
                         np.float64) * bond,
                nsc=[3, 3, 1])

            C = Atom(Z=6, R=[bond * 1.01])
            self.g = Geometry(
                np.array([[0., 0., 0.], [1., 0., 0.]], np.float64) * bond,
                atom=C,
                sc=self.sc)
            self.H = Hamiltonian(self.g)
            self.HS = Hamiltonian(self.g, orthogonal=False)

            C = Atom(Z=6, R=[bond * 1.01] * 2)
            self.g2 = Geometry(
                np.array([[0., 0., 0.], [1., 0., 0.]], np.float64) * bond,
                atom=C,
                sc=self.sc)
            self.H2 = Hamiltonian(self.g2)
            self.HS2 = Hamiltonian(self.g2, orthogonal=False)
Esempio n. 11
0
    def test_spin1(self, setup):
        g = Geometry([[i, 0, 0] for i in range(10)],
                     Atom(6, R=1.01),
                     sc=SuperCell(100, nsc=[3, 3, 1]))
        H = Hamiltonian(g, dtype=np.int32, spin=Spin.POLARIZED)
        for i in range(10):
            j = range(i * 2, i * 2 + 3)
            H[0, j] = (i, i * 2)

        H2 = Hamiltonian(g, 2, dtype=np.int32)
        for i in range(10):
            j = range(i * 2, i * 2 + 3)
            H2[0, j] = (i, i * 2)
        assert H.spsame(H2)
Esempio n. 12
0
def test_imaginary_fail_geometry(sisl_tmp):
    fr = sisl_tmp('GRID_real.cube', _dir)
    fi = sisl_tmp('GRID_imag.cube', _dir)
    geom = Geometry(np.random.rand(10, 3),
                    np.random.randint(1, 70, 10),
                    sc=[10, 10, 10, 45, 60, 90])
    grid = Grid(0.2, geometry=geom, dtype=np.complex128)
    grid.grid = np.random.rand(*grid.shape) + 1j * np.random.rand(*grid.shape)
    grid.write(fr)

    # Assert it fails on geometry
    grid2 = Grid(0.3, dtype=np.complex128)
    grid2.write(fi, imag=True)
    grid.read(fr, imag=fi)
Esempio n. 13
0
def test_grid_tile_geom():
    grid = Grid([4, 5, 6], geometry=Geometry([0] * 3, Atom[4], sc=4.))
    grid2 = grid.tile(2, 2)
    assert grid.shape[:2] == grid2.shape[:2]
    assert grid.shape[2] == grid2.shape[2] // 2
    assert grid.volume * 2 == pytest.approx(grid2.volume)
    assert grid.geometry.na * 2 == grid2.geometry.na

    grid4 = grid2.tile(2, 1)
    assert grid.shape[0] == grid4.shape[0]
    assert grid.shape[1] == grid4.shape[1] // 2
    assert grid.shape[2] == grid4.shape[2] // 2
    assert grid.volume * 4 == pytest.approx(grid4.volume)
    assert grid.geometry.na * 4 == grid4.geometry.na
Esempio n. 14
0
def diamond(alat=3.57, atom=None):
    """
    Returns a geometry with the diamond unit-cell (2 atoms)
    """
    dist = alat * 3.**.5 / 4
    if atom is None:
        atom = Atom(Z=6, R=dist * 1.01)
    sc = SuperCell(np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]], np.float64) *
                   alat / 2,
                   nsc=[3, 3, 3])
    dia = Geometry(np.array([[0, 0, 0], [1, 1, 1]], np.float64) * alat / 4,
                   atom,
                   sc=sc)
    return dia
Esempio n. 15
0
    def test_so1(self, setup):
        g = Geometry([[i, 0, 0] for i in range(10)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.float64, spin=Spin.SPINORBIT)
        for i in range(10):
            j = range(i * 4, i * 4 + 3)
            H[i, i, 0] = 0.
            H[i, i, 1] = 0.
            H[i, i, 2] = 0.1
            H[i, i, 3] = 0.1
            H[i, i, 4] = 0.1
            H[i, i, 5] = 0.1
            H[i, i, 6] = 0.1
            H[i, i, 7] = 0.1
            if i > 0:
                H[i, i - 1, 0] = 1.
                H[i, i - 1, 1] = 1.
            if i < 9:
                H[i, i + 1, 0] = 1.
                H[i, i + 1, 1] = 1.
        eig1 = H.eigh(dtype=np.complex64)
        assert np.allclose(H.eigh(dtype=np.complex128), eig1)
        assert len(H.eigh()) == len(H)

        H1 = Hamiltonian(g, dtype=np.float64, spin=Spin('spin-orbit'))
        for i in range(10):
            j = range(i * 4, i * 4 + 3)
            H1[i, i, 0] = 0.
            H1[i, i, 1] = 0.
            H1[i, i, 2] = 0.1
            H1[i, i, 3] = 0.1
            if i > 0:
                H1[i, i - 1, 0] = 1.
                H1[i, i - 1, 1] = 1.
            if i < 9:
                H1[i, i + 1, 0] = 1.
                H1[i, i + 1, 1] = 1.
        assert H1.spsame(H)
        eig1 = H1.eigh(dtype=np.complex64)
        assert np.allclose(H1.eigh(dtype=np.complex128), eig1)
        assert np.allclose(H.eigh(dtype=np.complex64),
                           H1.eigh(dtype=np.complex128))

        es = H.eigenstate(dtype=np.complex128)
        assert np.allclose(es.eig, eig1)
        es.spin_moment()

        PDOS = es.PDOS(np.linspace(-1, 1, 100))
        DOS = es.DOS(np.linspace(-1, 1, 100))
        assert np.allclose(PDOS.sum(1)[0, :], DOS)
Esempio n. 16
0
    def test_non_colinear_non_orthogonal(self, setup):
        g = Geometry([[i, 0, 0] for i in range(10)], Atom(6, R=1.01), sc=SuperCell(100, nsc=[3, 3, 1]))
        H = Hamiltonian(g, dtype=np.float64, orthogonal=False, spin=Spin.NONCOLINEAR)
        for i in range(10):
            j = range(i*2, i*2+3)
            H[i, i, 0] = 0.
            H[i, i, 1] = 0.
            H[i, i, 2] = 0.1
            H[i, i, 3] = 0.1
            if i > 0:
                H[i, i-1, 0] = 1.
                H[i, i-1, 1] = 1.
            if i < 9:
                H[i, i+1, 0] = 1.
                H[i, i+1, 1] = 1.
            H.S[i, i] = 1.
        eig1 = H.eigh(dtype=np.complex64)
        assert np.allclose(H.eigh(dtype=np.complex128), eig1)
        assert len(eig1) == len(H)

        H1 = Hamiltonian(g, dtype=np.float64, orthogonal=False, spin=Spin('non-collinear'))
        for i in range(10):
            j = range(i*2, i*2+3)
            H1[i, i, 0] = 0.
            H1[i, i, 1] = 0.
            H1[i, i, 2] = 0.1
            H1[i, i, 3] = 0.1
            if i > 0:
                H1[i, i-1, 0] = 1.
                H1[i, i-1, 1] = 1.
            if i < 9:
                H1[i, i+1, 0] = 1.
                H1[i, i+1, 1] = 1.
            H1.S[i, i] = 1.
        assert H1.spsame(H)
        eig1 = H1.eigh(dtype=np.complex64)
        assert np.allclose(H1.eigh(dtype=np.complex128), eig1)
        assert np.allclose(H.eigh(dtype=np.complex64), H1.eigh(dtype=np.complex128))

        es = H1.eigenstate(dtype=np.complex128)
        assert np.allclose(es.eig, eig1)

        sm = es.spin_moment()
        om = es.spin_orbital_moment()
        assert np.allclose(sm, om.sum(1))

        PDOS = es.PDOS(np.linspace(-1, 1, 100))
        DOS = es.DOS(np.linspace(-1, 1, 100))
        assert np.allclose(PDOS.sum(1)[0, :], DOS)
Esempio n. 17
0
File: basic.py Progetto: juijan/sisl
def bcc(alat, atoms, orthogonal=False):
    """ Body centered cubic lattice with 1 (non-orthogonal) or 2 atoms (orthogonal)

    Parameters
    ----------
    alat : float
        lattice parameter
    atoms : Atom
        the atom(s) in the BCC lattice
    orthogonal : bool, optional
        whether the lattice is orthogonal (2 atoms)
    """
    if orthogonal:
        sc = SuperCell(
            np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], np.float64) * alat)
        ah = alat / 2
        g = Geometry([[0, 0, 0], [ah, ah, ah]], atoms, sc=sc)
    else:
        sc = SuperCell(
            np.array([[-1, 1, 1], [1, -1, 1], [1, 1, -1]], np.float64) * alat /
            2)
        g = Geometry([0, 0, 0], atoms, sc=sc)
    geometry_define_nsc(g)
    return g
Esempio n. 18
0
File: basic.py Progetto: juijan/sisl
def sc(alat, atom):
    """ Simple cubic lattice with 1 atom

    Parameters
    ----------
    alat : float
        lattice parameter
    atom : Atom
        the atom in the SC lattice
    """
    sc = SuperCell(
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], np.float64) * alat)
    g = Geometry([0, 0, 0], atom, sc=sc)
    geometry_define_nsc(g)
    return g
Esempio n. 19
0
def test_wavefunction_eta():
    N = 50
    o1 = SphericalOrbital(
        0, (np.linspace(0, 2, N), np.exp(-np.linspace(0, 100, N))))
    G = Geometry([[1] * 3, [2] * 3], Atom(6, o1), sc=[4, 4, 4])
    H = Hamiltonian(G, spin=Spin('nc'))
    R, param = [0.1, 1.5], [[0., 0., 0.1, -0.1], [1., 1., 0.1, -0.1]]
    H.construct([R, param])
    ES = H.eigenstate()
    # Plot in the full thing
    grid = Grid(0.1,
                dtype=np.complex128,
                sc=SuperCell([2, 2, 2], origo=[-1] * 3))
    grid.fill(0.)
    ES.sub(0).wavefunction(grid, eta=True)
Esempio n. 20
0
def hcp(a, atoms, coa=1.63333, orthogonal=False):
    """ Hexagonal closed packed lattice with 2 (non-orthogonal) or 4 atoms (orthogonal)

    Parameters
    ----------
    a : float
        lattice parameter for 1st and 2nd lattice vectors
    atoms : Atom
        the atom(s) in the HCP lattice
    coa : float, optional
        c over a parameter where c is the 3rd lattice vector length
    orthogonal : bool, optional
        whether the lattice is orthogonal (4 atoms)
    """
    # height of hcp structure
    c = a * coa
    a2sq = a / 2**.5
    if orthogonal:
        sc = SuperCell([[a + a * _c60 * 2, 0, 0], [0, a * _c30 * 2, 0],
                        [0, 0, c / 2]])
        gt = Geometry([[0, 0, 0], [a, 0, 0], [a * _s30, a * _c30, 0],
                       [a * (1 + _s30), a * _c30, 0]],
                      atoms,
                      sc=sc)
        # Create the rotated one on top
        gr = gt.copy()
        # mirror structure
        gr.xyz[0, 1] += sc.cell[1, 1]
        gr.xyz[1, 1] += sc.cell[1, 1]
        gr = gr.translate(-np.amin(gr.xyz, axis=0))
        # Now displace to get the correct offset
        gr = gr.translate([0, a * _s30 / 2, 0])
        g = gt.append(gr, 2)
    else:
        sc = SuperCell([a, a, c, 90, 90, 60])
        g = Geometry([[0, 0, 0], [a2sq * _c30, a2sq * _s30, c / 2]],
                     atoms,
                     sc=sc)
    if np.all(g.maxR(True) > 0.):
        g.optimize_nsc()
    return g
Esempio n. 21
0
    def test_non_colinear1(self, setup):
        g = Geometry([[i, 0, 0] for i in range(10)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.float64, spin=Spin.NONCOLINEAR)
        for i in range(10):
            j = range(i * 4, i * 4 + 3)
            H[i, i, 0] = 0.
            H[i, i, 1] = 0.
            H[i, i, 2] = 0.1
            H[i, i, 3] = 0.1
            if i > 0:
                H[i, i - 1, 0] = 1.
                H[i, i - 1, 1] = 1.
            if i < 9:
                H[i, i + 1, 0] = 1.
                H[i, i + 1, 1] = 1.
        eig1 = H.eigh()
        # Check TimeSelector
        for i in range(4):
            assert np.allclose(H.eigh(), eig1)
        assert len(eig1) == len(H)

        H1 = Hamiltonian(g, dtype=np.float64, spin=Spin('non-collinear'))
        for i in range(10):
            j = range(i * 4, i * 4 + 3)
            H1[i, i, 0] = 0.
            H1[i, i, 1] = 0.
            H1[i, i, 2] = 0.1
            H1[i, i, 3] = 0.1
            if i > 0:
                H1[i, i - 1, 0] = 1.
                H1[i, i - 1, 1] = 1.
            if i < 9:
                H1[i, i + 1, 0] = 1.
                H1[i, i + 1, 1] = 1.
        assert H1.spsame(H)
        eig1 = H1.eigh()
        # Check TimeSelector
        for i in range(4):
            assert np.allclose(H1.eigh(), eig1)
        assert np.allclose(H.eigh(), H1.eigh())

        es = H1.eigenstate()
        assert np.allclose(es.eig, eig1)
        es.spin_moment()

        PDOS = es.PDOS(np.linspace(-1, 1, 100))
        DOS = es.DOS(np.linspace(-1, 1, 100))
        assert np.allclose(PDOS.sum(1)[0, :], DOS)
Esempio n. 22
0
 def test_non_collinear1(self):
     g = Geometry([[i, 0, 0] for i in range(10)], Atom(6, R=1.01), sc=[100])
     H = Hamiltonian(g, dtype=np.float64, spin=4)
     for i in range(10):
         j = range(i * 4, i * 4 + 3)
         H[i, i, 0] = 0.
         H[i, i, 1] = 0.
         H[i, i, 2] = 0.1
         H[i, i, 3] = 0.1
         if i > 0:
             H[i, i - 1, 0] = 1.
             H[i, i - 1, 1] = 1.
         if i < 9:
             H[i, i + 1, 0] = 1.
             H[i, i + 1, 1] = 1.
     assert_true(len(H.eigh()) == len(H) * 2)
Esempio n. 23
0
        def __init__(self):
            bond = 1.42
            sq3h = 3.**.5 * 0.5
            self.sc = SuperCell(np.array([[1.5, sq3h, 0.],
                                          [1.5, -sq3h, 0.],
                                          [0., 0., 10.]], np.float64) * bond, nsc=[3, 3, 1])

            n = 60
            rf = np.linspace(0, bond * 1.01, n)
            rf = (rf, rf)
            orb = SphericalOrbital(1, rf, 2.)
            C = Atom(6, orb.toAtomicOrbital())
            self.g = Geometry(np.array([[0., 0., 0.],
                                        [1., 0., 0.]], np.float64) * bond,
                              atoms=C, sc=self.sc)
            self.S = Overlap(self.g)
Esempio n. 24
0
    def read_geom(self):
        """ Returns `Geometry` object from the CUBE file """
        na, sc = self.read_sc(na=True)

        # Start reading the geometry
        xyz = np.empty([na, 3], np.float64)
        atom = []
        for ia in range(na):
            tmp = self.readline().split()
            atom.append(Atom(int(tmp[0])))
            xyz[ia, 0] = float(tmp[2])
            xyz[ia, 1] = float(tmp[3])
            xyz[ia, 2] = float(tmp[4])

        xyz /= Ang2Bohr
        return Geometry(xyz, atom, sc=sc)
Esempio n. 25
0
    def test_orbital_momentum(self, setup):
        bond = 1.42
        sq3h = 3.**.5 * 0.5
        sc = SuperCell(np.array([[1.5, sq3h, 0.],
                                      [1.5, -sq3h, 0.],
                                      [0., 0., 10.]], np.float64) * bond, nsc=[3, 3, 1])

        orb = AtomicOrbital('px', R=bond * 1.001)
        C = Atom(6, orb)
        g = Geometry(np.array([[0., 0., 0.],
                                    [1., 0., 0.]], np.float64) * bond,
                        atoms=C, sc=sc)
        D = DensityMatrix(g, spin=Spin('SO'))
        D.construct([[0.1, bond + 0.01], [(1., 0.5, 0.01, 0.01, 0.01, 0.01, 0., 0.), (0.1, 0.1, 0.1, 0.1, 0., 0., 0., 0.)]])
        D.orbital_momentum("atom")
        D.orbital_momentum("orbital")
Esempio n. 26
0
    def read_hamiltonian(self, **kwargs):
        """ Returns the electronic structure from the siesta.TSHS file """

        # Now read the sizes used...
        Gamma, spin, no, no_s, nnz = _siesta.read_hsx_sizes(self.file)
        ncol, col, dH, dS, dxij = _siesta.read_hsx_hsx(self.file, Gamma, spin,
                                                       no, no_s, nnz)

        # Try and immediately attach a geometry
        geom = kwargs.get('geometry', kwargs.get('geom', None))
        if geom is None:
            # We have *no* clue about the
            if np.allclose(dxij, 0.):
                # We truly, have no clue,
                # Just generate a boxed system
                xyz = [[x, 0, 0] for x in range(no)]
                geom = Geometry(xyz, Atom(1), sc=[no, 1, 1])
            else:
                # Try to figure out the supercell
                warn(
                    self.__class__.__name__ +
                    ".read_hamiltonian (currently we can not calculate atomic positions from"
                    " xij array)")
        if geom.no != no:
            raise ValueError(
                "Reading HSX files requires the input geometry to have the "
                "correct number of orbitals {} / {}.".format(no, geom.no))

        # Create the Hamiltonian container
        H = Hamiltonian(geom,
                        spin,
                        nnzpr=1,
                        dtype=np.float32,
                        orthogonal=False)

        # Create the new sparse matrix
        H._csr.ncol = ncol.astype(np.int32, copy=False)
        H._csr.ptr = np.insert(np.cumsum(ncol, dtype=np.int32), 0, 0)
        # Correct fortran indices
        H._csr.col = col.astype(np.int32, copy=False) - 1
        H._csr._nnz = len(col)

        H._csr._D = np.empty([nnz, spin + 1], np.float32)
        H._csr._D[:, :spin] = dH[:, :]
        H._csr._D[:, spin] = dS[:]

        return H
Esempio n. 27
0
    def _read_geometry(self, sc, *args, **kwargs):
        """ Defered routine """

        is_frac = True
        f, _ = self.step_to('atoms_frac', case=False)
        if not f:
            is_frac = False
            self.fh.seek(0)
            f, _ = self.step_to('atoms_cart', case=False)

        if not f:
            raise ValueError(
                "The geometry coordinates (atoms_frac/cart) could not be found in the seed-file."
            )

        # Species and coordinate list
        s = []
        xyz = []

        # Read the next line to determine the units
        if is_frac:
            unit = 1.
        else:
            unit = self.readline()
            if len(unit.split()) > 1:
                l = unit.split()
                s.append(l[0])
                xyz.append(list(map(float, l[1:4])))
                unit = 1.
            else:
                unit = unit_convert(unit.strip().capitalize(), 'Ang')

        l = self.readline()
        while not 'end' in l:
            # Get the species and
            l = l.split()
            s.append(l[0])
            xyz.append(list(map(float, l[1:4])))
            l = self.readline()

        # Convert
        xyz = np.array(xyz, np.float64) * unit

        if is_frac:
            xyz = np.dot(sc.cell.T, xyz.T).T

        return Geometry(xyz, atoms=s, sc=sc)
Esempio n. 28
0
    def read_geometry(self):
        """ Returns Geometry object from the XV file
        """
        sc = self.read_supercell()

        # Read number of atoms
        na = int(self.readline())
        atms = [None] * na
        xyz = np.empty([na, 3], np.float64)
        line = np.empty(8, np.float64)
        for ia in range(na):
            line[:] = list(map(float, self.readline().split()[:8]))
            atms[ia] = Atom[int(line[1])]
            xyz[ia, :] = line[2:5]
        xyz *= Bohr2Ang

        return Geometry(xyz, atms, sc=sc)
Esempio n. 29
0
    def read_geom(self):
        """ Returns Geometry object from the XV file
        """
        sc = self.read_sc()

        # Read number of atoms
        na = int(self.readline())
        atms = [None] * na
        xyz = np.empty([na, 3], np.float64)
        line = np.empty(8, np.float64)
        for ia in range(na):
            line[:] = np.fromstring(self.readline(), dtype=float, sep=' ')[0:8]
            atms[ia] = Atom[int(line[1])]
            xyz[ia, :] = line[2:5]
        xyz *= Bohr2Ang

        return Geometry(xyz, atms, sc=sc)
Esempio n. 30
0
    def test_rho2(self, setup):
        bond = 1.42
        sq3h = 3.**.5 * 0.5
        sc = SuperCell(np.array(
            [[1.5, sq3h, 0.], [1.5, -sq3h, 0.], [0., 0., 10.]], np.float64) *
                       bond,
                       nsc=[3, 3, 1])

        n = 60
        rf = np.linspace(0, bond * 1.01, n)
        rf = (rf, rf)
        orb = SphericalOrbital(1, rf, 2.)
        C = Atom(6, orb)
        g = Geometry(np.array([[0., 0., 0.], [1., 0., 0.]], np.float64) * bond,
                     atom=C,
                     sc=sc)
        D = DensityMatrix(g)
        D.construct([[0.1, bond + 0.01], [1., 0.1]])
        grid = Grid(0.2, geometry=D.geom)
        D.density(grid)

        D = DensityMatrix(g, spin=Spin('P'))
        D.construct([[0.1, bond + 0.01], [(1., 0.5), (0.1, 0.1)]])
        grid = Grid(0.2, geometry=D.geom)
        D.density(grid)
        D.density(grid, [1., -1])
        D.density(grid, 0)
        D.density(grid, 1)

        D = DensityMatrix(g, spin=Spin('NC'))
        D.construct([[0.1, bond + 0.01],
                     [(1., 0.5, 0.01, 0.01), (0.1, 0.1, 0.1, 0.1)]])
        grid = Grid(0.2, geometry=D.geom)
        D.density(grid)
        D.density(grid, [[1., 0.], [0., -1]])

        D = DensityMatrix(g, spin=Spin('SO'))
        D.construct([[0.1, bond + 0.01],
                     [(1., 0.5, 0.01, 0.01, 0.01, 0.01, 0., 0.),
                      (0.1, 0.1, 0.1, 0.1, 0., 0., 0., 0.)]])
        grid = Grid(0.2, geometry=D.geom)
        D.density(grid)
        D.density(grid, [[1., 0.], [0., -1]])
        D.density(grid, Spin.X)
        D.density(grid, Spin.Y)
        D.density(grid, Spin.Z)
Esempio n. 31
0
        def __init__(self):
            bond = 1.42
            sq3h = 3.**.5 * 0.5
            self.sc = SuperCell(np.array([[1.5, sq3h, 0.],
                                          [1.5, -sq3h, 0.],
                                          [0., 0., 10.]], np.float64) * bond, nsc=[3, 3, 1])

            C = Atom(Z=6, R=[bond * 1.01])
            self.g = Geometry(np.array([[0., 0., 0.],
                                        [1., 0., 0.]], np.float64) * bond,
                            atom=C, sc=self.sc)
            self.H = Hamiltonian(self.g)
            func = self.H.create_construct([0.1, bond+0.1], [0., -2.7])
            self.H.construct(func)
            self.HS = Hamiltonian(self.g, orthogonal=False)
            func = self.HS.create_construct([0.1, bond+0.1], [(0., 1.), (-2.7, 0.)])
            self.HS.construct(func)
Esempio n. 32
0
def test_sparse_orbital_sub_orbital():
    a0 = Atom(1, R=(1.1, 1.4, 1.6))
    a1 = Atom(2, R=(1.3, 1.1))
    g = Geometry([[0, 0, 0], [1, 1, 1]], [a0, a1],
                 sc=SuperCell(2, nsc=[3, 1, 1]))
    assert g.no == 5

    spo = SparseOrbital(g)
    for io in range(g.no):
        spo[io, io] = io + 1
        spo[io, io + g.no - 1] = io - 2
        spo[io, io + 1] = io + 2
    # Ensure we have a Hermitian matrix
    spo = spo + spo.transpose()

    # Ensure sub and remove does the same
    for i in [0, a0]:
        spo_rem = spo.remove_orbital(i, 0)
        spo_sub = spo.sub_orbital(i, [1, 2])
        assert spo_rem.spsame(spo_sub)

        spo_rem = spo.remove_orbital(i, [0, 2])
        spo_sub = spo.sub_orbital(i, 1)
        assert spo_rem.spsame(spo_sub)

        spo_rem = spo.remove_orbital(i, 2)
        spo_sub = spo.sub_orbital(i, [0, 1])
        assert spo_rem.spsame(spo_sub)

        spo_rem = spo.remove_orbital(i, a0[0])
        spo_sub = spo.sub_orbital(i, [1, 2])
        assert spo_rem.spsame(spo_sub)

    for i in [1, a1]:
        spo_rem = spo.remove_orbital(i, a1[0])
        spo_sub = spo.sub_orbital(i, a1[1])
        assert spo_rem.spsame(spo_sub)

    spo_rem = spo.remove_orbital([0, 1], 0)
    spo_sub = spo.sub_orbital(0, [1, 2]).sub_orbital(1, 1)
    assert spo_rem.spsame(spo_sub)

    spo_rem = spo.remove_orbital([0, 1], 1)
    spo_sub = spo.sub_orbital(0, [0, 2]).sub_orbital(1, 0)
    assert spo_rem.spsame(spo_sub)
Esempio n. 33
0
    def read_geometry(self, species_Z=False):
        """ Returns a `Geometry` object from the STRUCT file

        Parameters
        ----------
        species_Z : bool, optional
           if ``True`` the atomic numbers are the species indices (useful when
           reading the ChemicalSpeciesLabel block simultaneously).

        Returns
        -------
        Geometry
        """
        sc = self.read_supercell()

        # Read number of atoms
        na = int(self.readline())
        xyz = np.empty([na, 3], np.float64)
        atms = [None] * na
        sp = np.empty([na], np.int32)
        for ia in range(na):
            line = self.readline().split()
            sp[ia] = int(line[0])
            if species_Z:
                atms[ia] = Atom(sp[ia])
            else:
                atms[ia] = Atom(int(line[1]))
            xyz[ia, :] = line[2:5]

        xyz = xyz @ sc.cell

        # Ensure correct sorting
        max_s = sp.max()
        sp -= 1
        # Ensure we can remove the atom after having aligned them
        atms2 = Atoms(AtomUnknown(1000), na=na)
        for i in range(max_s):
            idx = (sp[:] == i).nonzero()[0]
            if len(idx) == 0:
                # Always ensure we have "something" for the unoccupied places
                atms2[idx] = AtomUnknown(1000 + i)
            else:
                atms2[idx] = atms[idx[0]]

        return Geometry(xyz, atms2.reduce(), sc=sc)
Esempio n. 34
0
    def setUp(self):
        bond = 1.42
        sq3h = 3.**.5 * 0.5
        self.sc = SuperCell(np.array([[1.5, sq3h, 0.],
                                      [1.5, -sq3h, 0.],
                                      [0., 0., 10.]], np.float64) * bond, nsc=[3, 3, 1])

        C = Atom(Z=6, R=bond * 1.01, orbs=1)
        self.g = Geometry(np.array([[0., 0., 0.],
                                    [1., 0., 0.]], np.float64) * bond,
                          atom=C, sc=self.sc)
        self.H = Hamiltonian(self.g)
        self.HS = Hamiltonian(self.g, orthogonal=False)

        C = Atom(Z=6, R=bond * 1.01, orbs=2)
        self.g2 = Geometry(np.array([[0., 0., 0.],
                                    [1., 0., 0.]], np.float64) * bond,
                          atom=C, sc=self.sc)
        self.H2 = Hamiltonian(self.g2)
        self.HS2 = Hamiltonian(self.g2, orthogonal=False)
Esempio n. 35
0
class TestHamiltonian(object):
    # Base test class for MaskedArrays.

    def setUp(self):
        bond = 1.42
        sq3h = 3.**.5 * 0.5
        self.sc = SuperCell(np.array([[1.5, sq3h, 0.],
                                      [1.5, -sq3h, 0.],
                                      [0., 0., 10.]], np.float64) * bond, nsc=[3, 3, 1])

        C = Atom(Z=6, R=bond * 1.01, orbs=1)
        self.g = Geometry(np.array([[0., 0., 0.],
                                    [1., 0., 0.]], np.float64) * bond,
                          atom=C, sc=self.sc)
        self.H = Hamiltonian(self.g)
        self.HS = Hamiltonian(self.g, orthogonal=False)

        C = Atom(Z=6, R=bond * 1.01, orbs=2)
        self.g2 = Geometry(np.array([[0., 0., 0.],
                                    [1., 0., 0.]], np.float64) * bond,
                          atom=C, sc=self.sc)
        self.H2 = Hamiltonian(self.g2)
        self.HS2 = Hamiltonian(self.g2, orthogonal=False)


    def tearDown(self):
        del self.sc
        del self.g
        del self.H
        del self.HS
        del self.g2
        del self.H2
        del self.HS2

    def test_objects(self):
        print(self.H)
        assert_true(len(self.H.xyz) == 2)
        assert_true(self.g.no == len(self.H))
        assert_true(len(self.HS.xyz) == 2)
        assert_true(self.g.no == len(self.HS))

        assert_true(len(self.H2.xyz) == 2)
        assert_true(self.g2.no == len(self.H2))
        assert_true(len(self.HS2.xyz) == 2)
        assert_true(self.g2.no == len(self.HS2))

    def test_dtype(self):
        assert_true(self.H.dtype == np.float64)
        assert_true(self.HS.dtype == np.float64)
        assert_true(self.H2.dtype == np.float64)
        assert_true(self.HS2.dtype == np.float64)

    def test_ortho(self):
        assert_true(self.H.orthogonal)
        assert_false(self.HS.orthogonal)

    def test_set1(self):
        self.H.H[0,0] = 1.
        assert_true(self.H[0,0] == 1.)
        assert_true(self.H[1,0] == 0.)
        self.H.empty()

        self.HS.H[0,0] = 1.
        assert_true(self.HS.H[0,0] == 1.)
        assert_true(self.HS.H[1,0] == 0.)
        assert_true(self.HS.S[0,0] == 0.)
        assert_true(self.HS.S[1,0] == 0.)
        self.HS.S[0,0] = 1.
        assert_true(self.HS.H[0,0] == 1.)
        assert_true(self.HS.H[1,0] == 0.)
        assert_true(self.HS.S[0,0] == 1.)
        assert_true(self.HS.S[1,0] == 0.)

        # delete before creating the same content
        self.HS.empty()
        self.HS[0,0] = 1., 1.
        assert_true(self.HS.H[0,0] == 1.)
        assert_true(self.HS.S[0,0] == 1.)
        self.HS.empty()

    def test_set2(self):
        self.H.construct((0.1,1.5), (1.,0.1))
        assert_true(self.H[0,0] == 1.)
        assert_true(self.H[1,0] == 0.1)
        assert_true(self.H[0,1] == 0.1)
        self.H.empty()

    def test_set3(self):
        self.HS.construct((0.1, 1.5), ((1., 2.), (0.1, 0.2)))
        assert_true(self.HS.H[0,0] == 1.)
        assert_true(self.HS.S[0,0] == 2.)
        assert_true(self.HS.H[1,1] == 1.)
        assert_true(self.HS.S[1,1] == 2.)
        assert_true(self.HS.H[1,0] == 0.1)
        assert_true(self.HS.H[0,1] == 0.1)
        assert_true(self.HS.S[1,0] == 0.2)
        assert_true(self.HS.S[0,1] == 0.2)
        assert_true(self.HS.nnz == len(self.HS) * 4)
        self.HS.empty()

    def test_set4(self):
        for ia, io in self.H:
            # Find atoms close to 'ia'
            idx = self.H.geom.close(ia, dR=(0.1, 1.5) )
            self.H[io, idx[0]] = 1.
            self.H[io, idx[1]] = 0.1
        assert_true(self.H.H[0,0] == 1.)
        assert_true(self.H.H[1,1] == 1.)
        assert_true(self.H.H[1,0] == 0.1)
        assert_true(self.H.H[0,1] == 0.1)
        assert_true(self.H.nnz == len(self.H) * 4)
        self.H.empty()

    @attr('slow')
    def test_set5(self):
        # Test of HUGE construct
        g = self.g.tile(10, 0).tile(10, 1).tile(10, 2)
        H = Hamiltonian(g)
        H.construct( (0.1, 1.5), (1., 0.1) )
        assert_true(H.H[0,0] == 1.)
        assert_true(H.H[1,1] == 1.)
        assert_true(H.H[1,0] == 0.1)
        assert_true(H.H[0,1] == 0.1)
        # This is graphene
        # on-site == len(H)
        # nn == 3 * len(H)
        assert_true(H.nnz == len(H) * 4)
        del H

    def test_op1(self):
        g = Geometry([[i, 0,0] for i in range(100)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.int32)
        for i in range(10):
            j = range(i*4, i*4+3)
            H[0, j] = i

            # i+
            H += 1
            for jj in j:
                assert_equal(H[0, jj], i+1)
                assert_equal(H[1, jj], 0)

            # i-
            H -= 1
            for jj in j:
                assert_equal(H[0, jj], i)
                assert_equal(H[1, jj], 0)

            # i*
            H *= 2
            for jj in j:
                assert_equal(H[0, jj], i*2)
                assert_equal(H[1, jj], 0)

            # //
            H //= 2
            for jj in j:
                assert_equal(H[0, jj], i)
                assert_equal(H[1, jj], 0)

            # i**
            H **= 2
            for jj in j:
                assert_equal(H[0, jj], i**2)
                assert_equal(H[1, jj], 0)

    def test_op2(self):
        g = Geometry([[i, 0,0] for i in range(100)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.int32)
        for i in range(10):
            j = range(i*4, i*4+3)
            H[0, j] = i

            # +
            s = H + 1
            for jj in j:
                assert_equal(s[0, jj], i+1)
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

            # -
            s = H - 1
            for jj in j:
                assert_equal(s[0, jj], i-1)
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

            # -
            s = 1 - H
            for jj in j:
                assert_equal(s[0, jj], 1-i)
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

            # *
            s = H * 2
            for jj in j:
                assert_equal(s[0, jj], i*2)
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

            # //
            s = s // 2
            for jj in j:
                assert_equal(s[0, jj], i)
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

            # **
            s = H ** 2
            for jj in j:
                assert_equal(s[0, jj], i**2)
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

            # ** (r)
            s = 2 ** H
            for jj in j:
                assert_equal(s[0, jj], 2 ** H[0, jj])
                assert_equal(H[0, jj], i)
                assert_equal(s[1, jj], 0)

    def test_op3(self):
        g = Geometry([[i, 0,0] for i in range(100)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.int32)
        # Create initial stuff
        for i in range(10):
            j = range(i*4, i*4+3)
            H[0, j] = i

        for op in ['add', 'sub', 'mul', 'pow']:
            func = getattr(H, '__{}__'.format(op))
            h = func(1)
            assert_equal(h.dtype, np.int32)
            h = func(1.)
            assert_equal(h.dtype, np.float64)
            if op != 'pow':
                h = func(1.j)
                assert_equal(h.dtype, np.complex128)

        H = H.copy(dtype=np.float64)
        for op in ['add', 'sub', 'mul', 'pow']:
            func = getattr(H, '__{}__'.format(op))
            h = func(1)
            assert_equal(h.dtype, np.float64)
            h = func(1.)
            assert_equal(h.dtype, np.float64)
            if op != 'pow':
                h = func(1.j)
                assert_equal(h.dtype, np.complex128)

        H = H.copy(dtype=np.complex128)
        for op in ['add', 'sub', 'mul', 'pow']:
            func = getattr(H, '__{}__'.format(op))
            h = func(1)
            assert_equal(h.dtype, np.complex128)
            h = func(1.)
            assert_equal(h.dtype, np.complex128)
            if op != 'pow':
                h = func(1.j)
                assert_equal(h.dtype, np.complex128)

    def test_op4(self):
        g = Geometry([[i, 0,0] for i in range(100)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.int32)
        # Create initial stuff
        for i in range(10):
            j = range(i*4, i*4+3)
            H[0, j] = i

        h = 1 + H
        assert_equal(h.dtype, np.int32)
        h = 1. + H
        assert_equal(h.dtype, np.float64)
        h = 1.j + H
        assert_equal(h.dtype, np.complex128)

        h = 1 - H
        assert_equal(h.dtype, np.int32)
        h = 1. - H
        assert_equal(h.dtype, np.float64)
        h = 1.j - H
        assert_equal(h.dtype, np.complex128)
        
        h = 1 * H
        assert_equal(h.dtype, np.int32)
        h = 1. * H
        assert_equal(h.dtype, np.float64)
        h = 1.j * H
        assert_equal(h.dtype, np.complex128)

        h = 1 ** H
        assert_equal(h.dtype, np.int32)
        h = 1. ** H
        assert_equal(h.dtype, np.float64)
        h = 1.j ** H
        assert_equal(h.dtype, np.complex128)

    def test_eig1(self):
        # Test of eigenvalues
        g = self.g.tile(2, 0).tile(2, 1).tile(2, 2)
        H = Hamiltonian(g)
        H.construct((0.1,1.5), (1.,0.1))
        H.eigh()
        H.eigsh(n=4)
        H.empty()
        del H

    def test_eig2(self):
        # Test of eigenvalues
        self.HS.construct((0.1,1.5), ((1.,1.), (0.1,0.1)))
        self.HS.eigh()
        self.HS.empty()

    def test_spin2(self):
        g = Geometry([[i, 0,0] for i in range(10)], Atom(6, R=1.01), sc=[100])
        H = Hamiltonian(g, dtype=np.int32, spin=2)
        for i in range(10):
            j = range(i*4, i*4+3)
            H[0, j] = (i, i*2)


    def test_finalized(self):
        assert_false(self.H.finalized)
        self.H.H[0,0] = 1.
        self.H.finalize()
        assert_true(self.H.finalized)
        assert_true(self.H.nnz == 1)
        self.H.empty()
        assert_false(self.HS.finalized)
        self.HS[0,0] = 1., 1.
        self.HS.finalize()
        assert_true(self.HS.finalized)
        assert_true(self.HS.nnz == 1)
        self.HS.empty()
Esempio n. 36
0
class TestGeometry(object):
    def setUp(self):
        bond = 1.42
        sq3h = 3.0 ** 0.5 * 0.5
        self.sc = SuperCell(
            np.array([[1.5, sq3h, 0.0], [1.5, -sq3h, 0.0], [0.0, 0.0, 10.0]], np.float64) * bond, nsc=[3, 3, 1]
        )
        C = Atom(Z=6, R=bond * 1.01, orbs=2)
        self.g = Geometry(np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], np.float64) * bond, atom=C, sc=self.sc)

        self.mol = Geometry([[i, 0, 0] for i in range(10)], sc=[50])

    def tearDown(self):
        del self.g
        del self.sc
        del self.mol

    def test_objects(self):
        # just make sure __repr__ works
        print(self.g)
        assert_true(len(self.g) == 2)
        assert_true(len(self.g.xyz) == 2)
        assert_true(np.allclose(self.g[0, :], np.zeros([3])))

        i = 0
        for ia in self.g:
            i += 1
        assert_true(i == len(self.g))
        assert_true(self.g.no_s == 2 * len(self.g) * np.prod(self.g.sc.nsc))

    def test_iter1(self):
        i = 0
        for ia in self.g:
            i += 1
        assert_true(i == 2)

    def test_iter2(self):
        for ia in self.g:
            assert_true(np.allclose(self.g[ia, :], self.g.xyz[ia, :]))

    def test_tile1(self):
        cell = np.copy(self.g.sc.cell)
        cell[0, :] *= 2
        t = self.g.tile(2, 0)
        assert_true(np.allclose(cell, t.sc.cell))
        cell[1, :] *= 2
        t = t.tile(2, 1)
        assert_true(np.allclose(cell, t.sc.cell))
        cell[2, :] *= 2
        t = t.tile(2, 2)
        assert_true(np.allclose(cell, t.sc.cell))

    def test_tile2(self):
        cell = np.copy(self.g.sc.cell)
        cell[:, :] *= 2
        t = self.g.tile(2, 0).tile(2, 1).tile(2, 2)
        assert_true(np.allclose(cell, t.sc.cell))

    def test_repeat1(self):
        cell = np.copy(self.g.sc.cell)
        cell[0, :] *= 2
        t = self.g.repeat(2, 0)
        assert_true(np.allclose(cell, t.sc.cell))
        cell[1, :] *= 2
        t = t.repeat(2, 1)
        assert_true(np.allclose(cell, t.sc.cell))
        cell[2, :] *= 2
        t = t.repeat(2, 2)
        assert_true(np.allclose(cell, t.sc.cell))

    def test_repeat2(self):
        cell = np.copy(self.g.sc.cell)
        cell[:, :] *= 2
        t = self.g.repeat(2, 0).repeat(2, 1).repeat(2, 2)
        assert_true(np.allclose(cell, t.sc.cell))

    def test_a2o1(self):
        assert_true(0 == self.g.a2o(0))
        assert_true(self.g.atom[0].orbs == self.g.a2o(1))
        assert_true(self.g.no == self.g.a2o(self.g.na))

    def test_sub1(self):
        assert_true(len(self.g.sub([0])) == 1)
        assert_true(len(self.g.sub([0, 1])) == 2)
        assert_true(len(self.g.sub([-1])) == 1)

    def test_sub2(self):
        assert_true(len(self.g.sub(range(1))) == 1)
        assert_true(len(self.g.sub(range(2))) == 2)

    def test_cut(self):
        assert_true(len(self.g.cut(1, 1)) == 2)
        assert_true(len(self.g.cut(2, 1)) == 1)
        assert_true(len(self.g.cut(2, 1, 1)) == 1)

    def test_cut2(self):
        c1 = self.g.cut(2, 1)
        c2 = self.g.cut(2, 1, 1)
        assert_true(np.allclose(c1.xyz[0, :], self.g.xyz[0, :]))
        assert_true(np.allclose(c2.xyz[0, :], self.g.xyz[1, :]))

    def test_remove1(self):
        assert_true(len(self.g.remove([0])) == 1)
        assert_true(len(self.g.remove([])) == 2)
        assert_true(len(self.g.remove([-1])) == 1)
        assert_true(len(self.g.remove([-0])) == 1)

    def test_remove2(self):
        assert_true(len(self.g.remove(range(1))) == 1)
        assert_true(len(self.g.remove(range(0))) == 2)

    def test_copy(self):
        assert_true(self.g == self.g.copy())

    def test_nsc1(self):
        nsc = np.copy(self.g.nsc)
        self.g.sc.set_nsc([5, 5, 0])
        assert_true(np.allclose([5, 5, 1], self.g.nsc))
        assert_true(len(self.g.sc_off) == np.prod(self.g.nsc))

    def test_nsc2(self):
        nsc = np.copy(self.g.nsc)
        self.g.sc.set_nsc([0, 1, 0])
        assert_true(np.allclose([1, 1, 1], self.g.nsc))
        assert_true(len(self.g.sc_off) == np.prod(self.g.nsc))

    def test_rotation1(self):
        rot = self.g.rotate(180, [0, 0, 1])
        rot.sc.cell[2, 2] *= -1
        assert_true(np.allclose(-rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(-rot.xyz, self.g.xyz))

        rot = self.g.rotate(np.pi, [0, 0, 1], radians=True)
        rot.sc.cell[2, 2] *= -1
        assert_true(np.allclose(-rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(-rot.xyz, self.g.xyz))

        rot = rot.rotate(180, [0, 0, 1])
        rot.sc.cell[2, 2] *= -1
        assert_true(np.allclose(rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(rot.xyz, self.g.xyz))

    def test_rotation2(self):
        rot = self.g.rotate(180, [0, 0, 1], only="abc")
        rot.sc.cell[2, 2] *= -1
        assert_true(np.allclose(-rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(rot.xyz, self.g.xyz))

        rot = self.g.rotate(np.pi, [0, 0, 1], radians=True, only="abc")
        rot.sc.cell[2, 2] *= -1
        assert_true(np.allclose(-rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(rot.xyz, self.g.xyz))

        rot = rot.rotate(180, [0, 0, 1], only="abc")
        rot.sc.cell[2, 2] *= -1
        assert_true(np.allclose(rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(rot.xyz, self.g.xyz))

    def test_rotation3(self):
        rot = self.g.rotate(180, [0, 0, 1], only="xyz")
        assert_true(np.allclose(rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(-rot.xyz, self.g.xyz))

        rot = self.g.rotate(np.pi, [0, 0, 1], radians=True, only="xyz")
        assert_true(np.allclose(rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(-rot.xyz, self.g.xyz))

        rot = rot.rotate(180, [0, 0, 1], only="xyz")
        assert_true(np.allclose(rot.sc.cell, self.g.sc.cell))
        assert_true(np.allclose(rot.xyz, self.g.xyz))

    def test_translate(self):
        t = self.g.translate([0, 0, 1])
        assert_true(np.allclose(self.g[:, 0], t[:, 0]))
        assert_true(np.allclose(self.g[:, 1], t[:, 1]))
        assert_true(np.allclose(self.g[:, 2] + 1, t[:, 2]))
        t = self.g.move([0, 0, 1])
        assert_true(np.allclose(self.g[:, 0], t[:, 0]))
        assert_true(np.allclose(self.g[:, 1], t[:, 1]))
        assert_true(np.allclose(self.g[:, 2] + 1, t[:, 2]))

    def test_iter(self):
        for i, iaaspec in enumerate(self.g.iter_species()):
            ia, a, spec = iaaspec
            assert_true(i == ia)
            assert_true(self.g.atom[ia] == a)
        for ia in self.g:
            assert_true(ia >= 0)
        i = 0
        for ias, idx in self.g.iter_block():
            for ia in ias:
                i += 1
        assert_true(i == len(self.g))

    def test_swap(self):
        s = self.g.swap(0, 1)
        for i in [0, 1, 2]:
            assert_true(np.allclose(self.g[::-1, i], s[:, i]))

    def test_append1(self):
        for axis in [0, 1, 2]:
            s = self.g.append(self.g, axis)
            assert_equal(len(s), len(self.g) * 2)
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            s = self.g.prepend(self.g, axis)
            assert_equal(len(s), len(self.g) * 2)
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            s = self.g.append(self.g.sc, axis)
            assert_equal(len(s), len(self.g))
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            s = self.g.prepend(self.g.sc, axis)
            assert_equal(len(s), len(self.g))
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))
            assert_true(np.allclose(s.cell[axis, :], self.g.cell[axis, :] * 2))

    def test_swapaxes(self):
        s = self.g.swapaxes(0, 1)
        assert_true(np.allclose(self.g[:, 0], s[:, 1]))
        assert_true(np.allclose(self.g[:, 1], s[:, 0]))
        assert_true(np.allclose(self.g.cell[0, :], s.cell[1, :]))
        assert_true(np.allclose(self.g.cell[1, :], s.cell[0, :]))

    def test_center(self):
        one = self.g.center(atom=[0])
        assert_true(np.allclose(self.g[0, :], one))
        al = self.g.center()
        assert_true(np.allclose(np.mean(self.g.xyz, axis=0), al))

    def test_add(self):
        double = self.g.add(self.g)
        assert_equal(len(double), len(self.g) * 2)
        assert_true(np.allclose(self.g.cell, double.cell))

    def test_insert(self):
        double = self.g.insert(0, self.g)
        assert_equal(len(double), len(self.g) * 2)
        assert_true(np.allclose(self.g.cell, double.cell))

    def test_a2o(self):
        # There are 2 orbitals per C atom
        assert_equal(self.g.a2o(1), self.g.atom[0].orbs)

    def test_o2a(self):
        # There are 2 orbitals per C atom
        assert_equal(self.g.o2a(2), 1)

    def test_reverse(self):
        rev = self.g.reverse()
        assert_true(len(rev) == 2)
        assert_true(np.allclose(rev.xyz[::-1, :], self.g.xyz))
        rev = self.g.reverse(atom=list(range(len(self.g))))
        assert_true(len(rev) == 2)
        assert_true(np.allclose(rev.xyz[::-1, :], self.g.xyz))

    def test_close1(self):
        three = range(3)
        for ia in self.mol:
            i = self.mol.close(ia, dR=(0.1, 1.1), idx=three)
            if ia < 3:
                assert_equal(len(i[0]), 1)
            else:
                assert_equal(len(i[0]), 0)
            # Will only return results from [0,1,2]
            # but the fourth atom connects to
            # the third
            if ia in [0, 2, 3]:
                assert_equal(len(i[1]), 1)
            elif ia == 1:
                assert_equal(len(i[1]), 2)
            else:
                assert_equal(len(i[1]), 0)

    def test_close2(self):
        mol = range(3, 5)
        for ia in self.mol:
            i = self.mol.close(ia, dR=(0.1, 1.1), idx=mol)
            assert_equal(len(i), 2)
        i = self.mol.close([100, 100, 100], dR=0.1)
        assert_equal(len(i), 0)
        i = self.mol.close([100, 100, 100], dR=0.1, ret_dist=True)
        for el in i:
            assert_equal(len(el), 0)
        i = self.mol.close([100, 100, 100], dR=0.1, ret_dist=True, ret_coord=True)
        for el in i:
            assert_equal(len(el), 0)

    def test_close_sizes(self):
        point = 0

        # Return index
        idx = self.mol.close(point, dR=0.1)
        assert_equal(len(idx), 1)
        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1))
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 1)
        assert_false(isinstance(idx[0], list))
        # Longer
        idx = self.mol.close(point, dR=(0.1, 1.1, 2.1))
        assert_equal(len(idx), 3)
        assert_equal(len(idx[0]), 1)

        # Return index
        idx = self.mol.close(point, dR=0.1, ret_coord=True)
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 1)
        assert_equal(len(idx[1]), 1)
        assert_equal(idx[1].shape[0], 1)  # equivalent to above
        assert_equal(idx[1].shape[1], 3)

        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1), ret_coord=True)
        # [[idx-1, idx-2], [coord-1, coord-2]]
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 2)
        assert_equal(len(idx[1]), 2)
        # idx-1
        assert_equal(len(idx[0][0].shape), 1)
        assert_equal(idx[0][0].shape[0], 1)
        # idx-2
        assert_equal(idx[0][1].shape[0], 1)
        # coord-1
        assert_equal(len(idx[1][0].shape), 2)
        assert_equal(idx[1][0].shape[1], 3)
        # coord-2
        assert_equal(idx[1][1].shape[1], 3)

        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1), ret_coord=True, ret_dist=True)
        # [[idx-1, idx-2], [coord-1, coord-2], [dist-1, dist-2]]
        assert_equal(len(idx), 3)
        assert_equal(len(idx[0]), 2)
        assert_equal(len(idx[1]), 2)
        # idx-1
        assert_equal(len(idx[0][0].shape), 1)
        assert_equal(idx[0][0].shape[0], 1)
        # idx-2
        assert_equal(idx[0][1].shape[0], 1)
        # coord-1
        assert_equal(len(idx[1][0].shape), 2)
        assert_equal(idx[1][0].shape[1], 3)
        # coord-2
        assert_equal(idx[1][1].shape[1], 3)
        # dist-1
        assert_equal(len(idx[2][0].shape), 1)
        assert_equal(idx[2][0].shape[0], 1)
        # dist-2
        assert_equal(idx[2][1].shape[0], 1)

        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1), ret_dist=True)
        # [[idx-1, idx-2], [dist-1, dist-2]]
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 2)
        assert_equal(len(idx[1]), 2)
        # idx-1
        assert_equal(len(idx[0][0].shape), 1)
        assert_equal(idx[0][0].shape[0], 1)
        # idx-2
        assert_equal(idx[0][1].shape[0], 1)
        # dist-1
        assert_equal(len(idx[1][0].shape), 1)
        assert_equal(idx[1][0].shape[0], 1)
        # dist-2
        assert_equal(idx[1][1].shape[0], 1)

    def test_close_sizes_none(self):
        point = [100.0, 100.0, 100.0]

        # Return index
        idx = self.mol.close(point, dR=0.1)
        assert_equal(len(idx), 0)
        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1))
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 0)
        assert_false(isinstance(idx[0], list))
        # Longer
        idx = self.mol.close(point, dR=(0.1, 1.1, 2.1))
        assert_equal(len(idx), 3)
        assert_equal(len(idx[0]), 0)

        # Return index
        idx = self.mol.close(point, dR=0.1, ret_coord=True)
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 0)
        assert_equal(len(idx[1]), 0)
        assert_equal(idx[1].shape[0], 0)  # equivalent to above
        assert_equal(idx[1].shape[1], 3)

        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1), ret_coord=True)
        # [[idx-1, idx-2], [coord-1, coord-2]]
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 2)
        assert_equal(len(idx[1]), 2)
        # idx-1
        assert_equal(len(idx[0][0].shape), 1)
        assert_equal(idx[0][0].shape[0], 0)
        # idx-2
        assert_equal(idx[0][1].shape[0], 0)
        # coord-1
        assert_equal(len(idx[1][0].shape), 2)
        assert_equal(idx[1][0].shape[1], 3)
        # coord-2
        assert_equal(idx[1][1].shape[1], 3)

        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1), ret_coord=True, ret_dist=True)
        # [[idx-1, idx-2], [coord-1, coord-2], [dist-1, dist-2]]
        assert_equal(len(idx), 3)
        assert_equal(len(idx[0]), 2)
        assert_equal(len(idx[1]), 2)
        # idx-1
        assert_equal(len(idx[0][0].shape), 1)
        assert_equal(idx[0][0].shape[0], 0)
        # idx-2
        assert_equal(idx[0][1].shape[0], 0)
        # coord-1
        assert_equal(len(idx[1][0].shape), 2)
        assert_equal(idx[1][0].shape[0], 0)
        assert_equal(idx[1][0].shape[1], 3)
        # coord-2
        assert_equal(idx[1][1].shape[0], 0)
        assert_equal(idx[1][1].shape[1], 3)
        # dist-1
        assert_equal(len(idx[2][0].shape), 1)
        assert_equal(idx[2][0].shape[0], 0)
        # dist-2
        assert_equal(idx[2][1].shape[0], 0)

        # Return index of two things
        idx = self.mol.close(point, dR=(0.1, 1.1), ret_dist=True)
        # [[idx-1, idx-2], [dist-1, dist-2]]
        assert_equal(len(idx), 2)
        assert_equal(len(idx[0]), 2)
        assert_equal(len(idx[1]), 2)
        # idx-1
        assert_equal(len(idx[0][0].shape), 1)
        assert_equal(idx[0][0].shape[0], 0)
        # idx-2
        assert_equal(idx[0][1].shape[0], 0)
        # dist-1
        assert_equal(len(idx[1][0].shape), 1)
        assert_equal(idx[1][0].shape[0], 0)
        # dist-2
        assert_equal(idx[1][1].shape[0], 0)

    def test_bond_correct(self):
        # Create ribbon
        rib = self.g.tile(2, 1)
        # Convert the last atom to a H atom
        rib.atom[-1] = Atom[1]
        ia = len(rib) - 1
        # Get bond-length
        idx, d = rib.close(ia, dR=(0.1, 1000), ret_dist=True)
        i = np.argmin(d[1])
        d = d[1][i]
        rib.bond_correct(ia, idx[1][i])
        idx, d2 = rib.close(ia, dR=(0.1, 1000), ret_dist=True)
        i = np.argmin(d2[1])
        d2 = d2[1][i]
        assert_false(d == d2)
        # Calculate actual radius
        assert_true(d2 == (Atom[1].radius() + Atom[6].radius()))

    def test_unit_cell_estimation1(self):
        # Create new geometry with only the coordinates
        # and atoms
        geom = Geometry(self.g.xyz, Atom[6])
        # Only check the two distances we know have sizes
        for i in range(2):
            # It cannot guess skewed axis
            assert_false(np.allclose(geom.cell[i, :], self.g.cell[i, :]))

    def test_unit_cell_estimation2(self):
        # Create new geometry with only the coordinates
        # and atoms
        s1 = SuperCell([2, 2, 2])
        g1 = Geometry([[0, 0, 0], [1, 1, 1]], sc=s1)
        g2 = Geometry(np.copy(g1.xyz))
        assert_true(np.allclose(g1.cell, g2.cell))

        # Assert that it correctly calculates the bond-length in the
        # directions of actual distance
        g1 = Geometry([[0, 0, 0], [1, 1, 0]], atom="H", sc=s1)
        g2 = Geometry(np.copy(g1.xyz))
        for i in range(2):
            assert_true(np.allclose(g1.cell[i, :], g2.cell[i, :]))
        assert_false(np.allclose(g1.cell[2, :], g2.cell[2, :]))

    def test_argumentparser(self):
        self.g.ArgumentParser()

    def test_set_sc(self):
        # Create new geometry with only the coordinates
        # and atoms
        s1 = SuperCell([2, 2, 2])
        g1 = Geometry([[0, 0, 0], [1, 1, 1]], sc=[2, 2, 1])
        g1.set_sc(s1)
        assert_true(g1.sc == s1)

    def test_attach1(self):
        g = self.g.attach(0, self.mol, 0, dist=1.42, axis=2)
        g = self.g.attach(0, self.mol, 0, dist="calc", axis=2)
        g = self.g.attach(0, self.mol, 0, dist=[0, 0, 1.42])

    def test_mirror1(self):
        for plane in ["xy", "xz", "yz"]:
            self.g.mirror(plane)

    def test_pickle(self):
        import pickle as p

        s = p.dumps(self.g)
        n = p.loads(s)
        assert_true(n == self.g)
        assert_false(n != self.g)
Esempio n. 37
0
def nanotube(bond, atom=None, chirality=(1, 1)):
    """
    Create a nano-tube geometry

    This routine is implemented as in ``ASE`` with few changes.
    
    Parameters
    ----------
    bond: float
       length between atoms in nano-tube
    atom: Atom(6)
       nanotube atoms
    chirality: (int, int)
       chirality of nanotube (n, m)
    """
    if atom is None:
        atom = Atom[6]

    # Correct the input...
    n, m = chirality
    if n < m:
        m, n = n, m
        sign = -1
    else:
        sign = 1

    sq3 = 3.0 ** .5
    a = sq3 * bond
    l2 = n * n + m * m + n * m
    l = l2 ** .5

    def gcd(a, b):
        while a != 0:
            a, b = b % a, a
        return b

    nd = gcd(n, m)
    if (n - m) % (3 * nd) == 0:
        ndr = 3 * nd
    else:
        ndr = nd

    nr = (2 * m + n) // ndr
    ns = -(2 * n + m) // ndr
    nn = 2 * l2 // ndr

    ichk = 0
    if nr == 0:
        n60 = 1
    else:
        n60 = nr * 4

    absn = abs(n60)
    nnp = []
    nnq = []
    for i in range(-absn, absn + 1):
        for j in range(-absn, absn + 1):
            j2 = nr * j - ns * i
            if j2 == 1:
                j1 = m * i - n * j
                if j1 > 0 and j1 < nn:
                    ichk += 1
                    nnp.append(i)
                    nnq.append(j)

    if ichk == 0:
        raise RuntimeError('not found p, q strange!!')
    if ichk >= 2:
        raise RuntimeError('more than 1 pair p, q strange!!')

    nnnp = nnp[0]
    nnnq = nnq[0]

    lp = nnnp * nnnp + nnnq * nnnq + nnnp * nnnq
    r = a * lp ** .5
    c = a * l
    t = sq3 * c / ndr

    rs = c / (2.0 * np.pi)

    q1 = np.arctan((sq3 * m) / (2 * n + m))
    q2 = np.arctan((sq3 * nnnq) / (2 * nnnp + nnnq))
    q3 = q1 - q2

    q4 = 2.0 * np.pi / nn
    q5 = bond * np.cos((np.pi / 6.0) - q1) / c * 2.0 * np.pi

    h1 = abs(t) / abs(np.sin(q3))
    h2 = bond * np.sin((np.pi / 6.0) - q1)

    xyz = np.empty([nn*2, 3], np.float64)
    for i in range(nn):
        ix = i * 2
        
        k = np.floor(i * abs(r) / h1)
        xyz[ix,0] = rs * np.cos(i * q4)
        xyz[ix,1] = rs * np.sin(i * q4)
        z = (i * abs(r) - k * h1) * np.sin(q3)
        kk2 = abs(np.floor((z + 0.0001) / t))
        if z >= t - 0.0001:
            z -= t * kk2
        elif z < 0:
            z += t * kk2
        xyz[ix,2] = z * sign

        # Next
        ix += 1
        xyz[ix, 0] = rs * np.cos(i * q4 + q5)
        xyz[ix, 1] = rs * np.sin(i * q4 + q5)
        z = (i * abs(r) - k * h1) * np.sin(q3) - h2
        if z >= 0 and z < t:
            pass 
        else:
            z -= h1 * np.sin(q3)
            kk = abs(np.floor(z / t))
            if z >= t - 0.0001:
                z -= t * kk
            elif z < 0:
                z += t * kk
        xyz[ix, 2] = z * sign

    # Sort the atomic coordinates according to z
    idx = np.argsort(xyz[:,2])
    xyz = xyz[idx,:]

    sc = SuperCell([rs * 4, rs * 4, t], nsc=[1,1,3])

    geom = Geometry(xyz, atom, sc=sc)
    # Return a geometry with the first atom at (0,0,0)
    return geom.translate(-np.amin(geom.xyz, axis=0))
Esempio n. 38
0
 def ArgumentParser(self, *args, **kwargs):
     """ Returns the arguments that is available for this Sile """
     newkw = Geometry._ArgumentParser_args_single()
     newkw.update(kwargs)
     return self.read_geom().ArgumentParser(*args, **newkw)