def permanova_permdisp(self): # compute the permanova print('running permdisp\n\n') print(permdisp(distance_matrix=DistanceMatrix(self.dist_df), grouping=[_.split('_')[0] for _ in list(self.dist_df)], permutations=999)) print('running permanova\n\n') print(permanova(distance_matrix=DistanceMatrix(self.dist_df), grouping=[_.split('_')[0] for _ in list(self.dist_df)], permutations=9999))
def get_clusters(x_original, axis=['row', 'column'][0]): """Performs UPGMA clustering using euclidean distances""" x = x_original.copy() if axis == 'column': x = x.T nr = x.shape[0] metric_f = get_nonphylogenetic_metric('euclidean') row_dissims = DistanceMatrix(metric_f(x), map(str, range(nr))) # do upgma - rows # Average in SciPy's cluster.heirarchy.linkage is UPGMA linkage_matrix = linkage(row_dissims.condensed_form(), method='average') tree = TreeNode.from_linkage_matrix(linkage_matrix, row_dissims.ids) row_order = [int(tip.name) for tip in tree.tips()] return row_order
def _compute_collapsed_dm(dm, i, j, disallow_negative_branch_length, new_node_id): """Return the distance matrix resulting from joining ids i and j in a node. If the input distance matrix has shape ``(n, n)``, the result will have shape ``(n-1, n-1)`` as the ids `i` and `j` are collapsed to a single new ids. """ in_n = dm.shape[0] out_n = in_n - 1 out_ids = [new_node_id] out_ids.extend([e for e in dm.ids if e not in (i, j)]) result = np.zeros((out_n, out_n)) # pre-populate the result array with known distances ij_indexes = [dm.index(i), dm.index(j)] result[1:, 1:] = np.delete(np.delete(dm.data, ij_indexes, axis=0), ij_indexes, axis=1) # calculate the new distances from the current DistanceMatrix k_to_u = 0.5 * (dm[i] + dm[j] - dm[i, j]) # set negative branches to 0 if specified if disallow_negative_branch_length: k_to_u[k_to_u < 0] = 0 # drop nodes being joined k_to_u = np.delete(k_to_u, ij_indexes) # assign the distances to the result array result[0] = result[:, 0] = np.concatenate([[0], k_to_u]) return DistanceMatrix(result, out_ids)
def setUp(self): self.test_dm = DistanceMatrix( np.array([ [0, 1, 2, 3, 4], [1, 0, 4, 5, 6], [2, 4, 0, 6, 7], [3, 5, 6, 0, 8], [4, 6, 7, 8, 0], ]), ids=[f'S{i}' for i in range(5)], ) n_samples = 100 np.random.seed(825) sample_embedding = np.random.normal(size=(n_samples, 3)) + 2 sample_embedding[:, 1] *= 3 sample_embedding[:, 2] *= 6 sample_df = pd.DataFrame( sample_embedding, index=[f'S{i}' for i in range(n_samples)], columns=[f'C{i}' for i in range(3)], ) self.test_ord_results = OrdinationResults( 'foo', 'bar', eigvals=pd.Series(np.arange(n_samples)), samples=sample_df, )
def distances(self, distance_fn): """Compute distances between all pairs of sequences Parameters ---------- distance_fn : function Function for computing the distance between a pair of sequences. This must take two sequences as input (as `skbio.Sequence` objects) and return a single integer or float value. Returns ------- skbio.DistanceMatrix Matrix containing the distances between all pairs of sequences. """ sequence_count = self.sequence_count() dm = np.zeros((sequence_count, sequence_count)) ids = [] for i in range(sequence_count): self_i = self[i] ids.append(self_i.metadata['id']) for j in range(i): dm[i, j] = dm[j, i] = self_i.distance(self[j], distance_fn) return DistanceMatrix(dm, ids)
def _reduce(blocks): """Reduce an iterable of partial distance matrices into a full matrix Note, the reduce doesn't actually care about what pairs are computed so if a distance between pairs exists multiple times, it'll get added. as such, this reduction is only safe to perform if by the block_beta_diversity method which assures that distances are not computed multiple times. """ all_blocks = list(blocks) # Determine the maximum integer ID observed in the blocks. There exists a # 1-1 mapping between the integer ID and a sample ID. We increment by 1 # as the integer ID space begins with zero, and we'll be using this value # to determine the size of the resulting full distance matrix. n_ids = max(map(lambda x: max(x.ids), all_blocks)) + 1 mat = np.zeros((n_ids, n_ids), dtype=float) # TODO: something smarter. for block in all_blocks: n_blk_ids = len(block.ids) # get the corresponding coordinates in the master matrix master_idx = [(i, j) for row, i in enumerate(block.ids) for j in block.ids[row + 1:]] # get the corresponding coordinates within the current block block_idx = [(i, j) for row, i in enumerate(range(n_blk_ids)) for j in range(row + 1, n_blk_ids)] for (m_i, m_j), (b_i, b_j) in zip(master_idx, block_idx): mat[m_i, m_j] += block.data[b_i, b_j] return DistanceMatrix(mat + mat.T, list(range(n_ids)))
def pcoa(lines): """Run PCoA on the distance matrix present on lines""" # Parse the distance matrix dist_mtx = DistanceMatrix.read(lines) # Create the PCoA object pcoa_obj = PCoA(dist_mtx) # Get the PCoA results and return them return pcoa_obj.scores()
def main(): if not os.path.exists('./fasta_db'): os.mkdir('./fasta_db') if not os.path.exists('./RES'): os.mkdir('./RES') # skempi_v1 = obtain_seq('SKP1402m.ddg.txt', 'SKP1402m.seq.txt') skempi_v1 = obtain_seq('SKP1102s.ddg.txt', 'SKP1102s.seq.txt') write_to_fasta(skempi_v1, './fasta_db/skempi_v1_SKP1102s.fasta') chain_name, dist_mat = generate_dist_mat(fasta_Seq='./fasta_db/skempi_v1_SKP1102s.fasta',\ dist_fun=dist_fun,dist_max=1,dist_unify_fun=min) # plot the distance matrix plt.imshow(dist_mat) plt.colorbar() plt.show() # To change linkage, specify linkage="complete" to linkage="single" or linkage="average" # the difference in the linkage can be found at # https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html, at comments of parameter linkage # Now cluster those that with identity > 25% together following the reviwer's comment # you can also choose to specify n_cluster, but then distance_threshold will need to be None # Just the uncomment the following two lines # Agg_cluster = AgglomerativeClustering(n_clusters=65, affinity="precomputed", # linkage="complete", compute_full_tree=True, distance_threshold=None) Agg_cluster = AgglomerativeClustering(n_clusters=None, affinity="precomputed", \ linkage="complete", compute_full_tree=True, distance_threshold=0.75) Agg_cluster.fit(dist_mat) # plot dendrogram cnd_dist_mat = DistanceMatrix(dist_mat).condensed_form() L = linkage(cnd_dist_mat, method='complete') plt.title('Dendrogram of sequences') dendrogram(L) plt.show() # save the result result = pd.DataFrame({"Chain": chain_name, "label": Agg_cluster.labels_}) result.to_csv('./RES/SKP1102s_cluster_label.csv', index=False) check_dict = {k: str(v) for k, v in zip(chain_name, Agg_cluster.labels_)} # read in the skempi_v1 dataset and add the additional column # dataset = pd.read_csv('dataFile/SKP1402m.ddg.txt', sep='\t', header=None) dataset = pd.read_csv('dataFile/SKP1102s.ddg.txt', sep='\t', header=None) identifier_col = [] for _, row in dataset.iterrows(): identifier_col.append(label_obs(check_dict, row)) dataset['class'] = identifier_col print(dataset.head()) dataset.to_csv('./RES/SKP1102s.ddg_class.txt', sep='\t', index=False, header=False)
def single_file_nj(input_file, output_file): dm = DistanceMatrix.read(input_file) tree = nj(dm) # write output f = open(output_file, 'w') f.write(tree.to_newick(with_distances=True)) f.close()
def testPer(self, dist, group): per = self.permanova(dist, group) print(per[0]) print(per[2]) print( permanova(DistanceMatrix(dist, range(len(group))), group, column=None, permutations=999))
def table_to_distances(table, pairwise_distance_fn): sample_ids = table.columns num_samples = len(sample_ids) data = zeros((num_samples, num_samples)) for i, sample1_id in enumerate(sample_ids): for j, sample2_id in enumerate(sample_ids[:i]): data[i, j] = data[j, i] = pairwise_distance_fn( table, sample1_id, sample2_id) return DistanceMatrix(data, sample_ids)
def _order_dms(x, y, strict=True, lookup=None): """Intersect distance matrices and put them in the same order.""" x_is_dm = isinstance(x, DistanceMatrix) y_is_dm = isinstance(y, DistanceMatrix) if (x_is_dm and not y_is_dm) or (y_is_dm and not x_is_dm): raise TypeError( "Mixing DistanceMatrix and array_like input types is not " "supported. Both x and y must either be DistanceMatrix instances " "or array_like, but not mixed.") elif x_is_dm and y_is_dm: if lookup is not None: x = _remap_ids(x, lookup, 'x', 'first') y = _remap_ids(y, lookup, 'y', 'second') if tuple(x.ids) == tuple(y.ids): return x, y id_order = [id_ for id_ in x.ids if id_ in y] num_matches = len(id_order) if (strict and ((num_matches != len(x.ids)) or (num_matches != len(y.ids)))): raise ValueError("IDs exist that are not in both distance " "matrices.") if num_matches < 1: raise ValueError("No matching IDs exist between the distance " "matrices.") return x.filter(id_order), y.filter(id_order) else: # Both x and y aren't DistanceMatrix instances. if lookup is not None: raise ValueError("ID lookup can only be provided if inputs are " "DistanceMatrix instances.") x = DistanceMatrix(x) y = DistanceMatrix(y) if x.shape != y.shape: raise ValueError("Distance matrices must have the same shape.") return x, y
def compute_aligned_sequence_distances(seqs, distance_fn=hamming_distance): dm = [] ids = [] for id1, seq1 in seqs: ids.append(id1) row = [] for id2, seq2 in seqs: row.append(hamming_distance(seq1, seq2)) dm.append(row) return DistanceMatrix(dm, ids)
def guide_tree_from_query_sequences(query_sequences, distance_fn=three_mer_distance, display_tree = False): guide_dm = [] seq_ids = [] for seq_id1, seq1 in query_sequences: seq_ids.append(seq_id1) row = [] for seq_id2, seq2 in query_sequences: row.append(kmer_distance(seq1, seq2, k=3)) guide_dm.append(row) guide_dm = DistanceMatrix(guide_dm, seq_ids) guide_lm = average(guide_dm.condensed_form()) guide_tree = to_tree(guide_lm) if display_tree: guide_d = dendrogram(guide_lm, labels=guide_dm.ids, orientation='right', link_color_func=lambda x: 'black') return guide_tree
def _compute_q(dm): """Compute Q matrix, used to identify the next pair of nodes to join. """ q = np.zeros(dm.shape) n = dm.shape[0] for i in range(n): for j in range(i): q[i, j] = q[j, i] = \ ((n - 2) * dm[i, j]) - dm[i].sum() - dm[j].sum() return DistanceMatrix(q, dm.ids)
def _compute_q(dm): """Compute Q matrix, used to identify the next pair of nodes to join. """ q = np.zeros(dm.shape) n = dm.shape[0] big_sum = np.array([dm.data.sum(1)] * dm.shape[0]) big_sum_diffs = big_sum + big_sum.T q = (n - 2) * dm.data - big_sum_diffs np.fill_diagonal(q, 0) return DistanceMatrix(q, dm.ids)
def do_pcoa(infile): samples, distmtx = parse_distmat(infile) # coords, each row is an axis distmtx = DistanceMatrix(distmtx, ids=samples) ord_res = pcoa(distmtx) coords = ord_res.samples eigvals = ord_res.eigvals pcnts = ord_res.proportion_explained #Write results to output ord_res.write(sys.stdout)
def guide_tree_from_query_sequences(query_sequences, distance_fn=three_mer_distance, display_tree=False): guide_dm = [] seq_ids = [] for seq_id1, seq1 in query_sequences: seq_ids.append(seq_id1) row = [] for seq_id2, seq2 in query_sequences: row.append(kmer_distance(seq1, seq2, k=3)) guide_dm.append(row) guide_dm = DistanceMatrix(guide_dm, seq_ids) guide_lm = average(guide_dm.condensed_form()) guide_tree = to_tree(guide_lm) if display_tree: guide_d = dendrogram(guide_lm, labels=guide_dm.ids, orientation='right', link_color_func=lambda x: 'black') return guide_tree
def setUp(self): self.counts = pd.read_csv(get_data_path('analyses/raw_otu_table.csv'), sep='\t', dtype={'#SampleID': str}) self.counts.set_index('#SampleID', inplace=True) self.metrics_beta = ["unweighted_unifrac", "bray_curtis"] self.beta = dict() for metric in self.metrics_beta: self.beta[metric] = DistanceMatrix.read( get_data_path('analyses/beta_%s.dm.txt' % metric))
def get_dmat(embedding, leaf_names, metric='euclidean', logger=None): """ Compute distances from embedding and return scikit-bio DistanceMatrix Args: embedding: the embedding for each taxa leaf_names: the leafe """ if logger: logger.info("computing %s distances" % metric) dist = squareform(pdist(embedding, metric=metric)) dmat = DistanceMatrix(dist, leaf_names) return dmat
def __call__(self, distance_matrix, output, verbose, *args, **kwargs): logger.info("Loading distance matrix...") dm = DistanceMatrix.read(distance_matrix) logger.info("Building tree...") tree = skbio.tree.nj(dm) tree = tree.root_at_midpoint() if verbose > 0: logger.info("Approximate tree using neighbour joining:\n%s", tree.ascii_art()) tree.write(output, format='newick') logger.info("Done.")
def pw_distances(metric, counts, ids=None, **kwargs): """Compute distances between all pairs of columns in a counts matrix Parameters ---------- metric : str, callable The pairwise distance function as a string or callable to use when generating pairwise distances. See the scipy ``pdist`` docs and the scikit-bio functions linked under *See Also* for available metrics. counts : 2D array_like of ints or floats Matrix containing count/abundance data where each row contains counts of observations in a given sample. ids : iterable of strs, optional Identifiers for each sample in ``counts``. Returns ------- skbio.DistanceMatrix Distances between all pairs of samples (i.e., rows). The number of row and columns will be equal to the number of rows in ``counts``. Raises ------ ValueError If ``len(ids) != len(counts)``. See Also -------- unweighted_unifrac weighted_unifrac scipy.spatial.distance.pdist pw_distances_from_table """ _skbio_metrics = _get_skbio_metrics() num_samples = len(counts) if ids is not None and num_samples != len(ids): raise ValueError( "Number of rows in counts must be equal to number of provided " "ids.") if metric in _skbio_metrics: metric = _skbio_metrics[metric] if callable(metric): metric = partial(metric, **kwargs) distances = pdist(counts, metric) return DistanceMatrix( squareform(distances, force='tomatrix', checks=False), ids)
def js_TSNE(distributions): """Dimension reduction via Jensen-Shannon Divergence & t-distributed Stochastic Neighbor Embedding Parameters ---------- distributions : array-like, shape (`n_dists`, `k`) Matrix of distributions probabilities. Returns ------- t-SNE : array, shape (`n_dists`, 2) """ dist_matrix = DistanceMatrix(dist.squareform(dist.pdist(distributions.values, _jensen_shannon))) model = TSNE(n_components=2, random_state=0, metric='precomputed') return model.fit_transform(dist_matrix.data)
def js_PCoA(distributions): """Dimension reduction via Jensen-Shannon Divergence & Principal Components Parameters ---------- distributions : array-like, shape (`n_dists`, `k`) Matrix of distributions probabilities. Returns ------- pcoa : array, shape (`n_dists`, 2) """ dist_matrix = DistanceMatrix(dist.squareform(dist.pdist(distributions.values, _jensen_shannon))) pcoa = PCoA(dist_matrix).scores() return pcoa.site[:,0:2]
def distances(self, distance_fn): """Compute distances between all pairs of sequences Parameters ---------- distance_fn : function Function for computing the distance between a pair of sequences. This must take two sequences as input (as `skbio.Sequence` objects) and return a single integer or float value. Returns ------- skbio.DistanceMatrix Matrix containing the distances between all pairs of sequences. See Also -------- skbio.DistanceMatrix scipy.spatial.distance.hamming Examples -------- >>> from scipy.spatial.distance import hamming >>> from skbio import SequenceCollection >>> from skbio import DNA >>> seqs = [DNA("ACCGGGTT", metadata={'id': "s1"}), ... DNA("ACTTGGTT", metadata={'id': "s2"}), ... DNA("ACTAGGTT", metadata={'id': "s3"})] >>> a1 = SequenceCollection(seqs) >>> print(a1.distances(hamming)) 3x3 distance matrix IDs: 's1', 's2', 's3' Data: [[ 0. 0.25 0.25 ] [ 0.25 0. 0.125] [ 0.25 0.125 0. ]] """ sequence_count = self.sequence_count() dm = np.zeros((sequence_count, sequence_count)) ids = [] for i in range(sequence_count): self_i = self[i] ids.append(self_i.metadata['id']) for j in range(i): dm[i, j] = dm[j, i] = self_i.distance(self[j], distance_fn) return DistanceMatrix(dm, ids)
def table_to_distances(table, pairwise_distance_fn): """ Function to make a distance matrix """ from skbio.stats.distance import DistanceMatrix from numpy import zeros sample_ids = table.columns num_samples = len(sample_ids) data = zeros((num_samples, num_samples)) for i, sample1_id in enumerate(sample_ids): for j, sample2_id in enumerate(sample_ids[:i]): data[i, j] = data[j, i] = pairwise_distance_fn(table, sample1_id, sample2_id) return DistanceMatrix(data, sample_ids)
def emb_tree(embedder, dist, leaf_names, target_tree, taxa_metadata, metric='euclidean', metric_kwargs=dict(), **fit_kwargs): emb = embedder.fit_transform(dist, **fit_kwargs) _dist = pdist(emb, metric=metric, **metric_kwargs) tree = upgma_tree(DistanceMatrix(squareform(_dist), leaf_names)) ret = dict() ret['rfd'] = target_tree.compare_rfd(tree) ret['subsets'] = target_tree.compare_subsets(tree) ret['tip_distances'] = target_tree.compare_tip_distances(tree) ret['pearson'] = spearmanr(_dist, squareform(dist))[0] ret['spearman'] = pearsonr(_dist, squareform(dist))[0] ret.update(get_phylo_stats(tree, taxa_metadata)) return ret
def pw_distances_from_table(table, metric="braycurtis"): """Compute distances between all pairs of samples in table Parameters ---------- table : biom.table.Table ``Table`` containing count/abundance data of observations across samples. metric : str, optional The name of the pairwise distance function to use when generating pairwise distances. See the scipy ``pdist`` docs, linked under *See Also*, for available metrics. Returns ------- skbio.DistanceMatrix Distances between all pairs of samples. The number of row and columns will be equal to the number of samples in ``table``. See Also -------- scipy.spatial.distance.pdist biom.table.Table pw_distances """ warn( "pw_distances_from_table is deprecated. In the future (tentatively " "scikit-bio 0.2.0), pw_distance will take a biom.table.Table object " "and this function will be removed. You will need to update your " "code to call pw_distances at that time.", DeprecationWarning) sample_ids = table.ids(axis="sample") num_samples = len(sample_ids) # initialize the result object dm = np.zeros((num_samples, num_samples)) for i, sid1 in enumerate(sample_ids): v1 = table.data(sid1) for j, sid2 in enumerate(sample_ids[:i]): v2 = table.data(sid2) dm[i, j] = dm[j, i] = pdist([v1, v2], metric) return DistanceMatrix(dm, sample_ids)
def pw_distances(counts, ids=None, metric="braycurtis"): """Compute distances between all pairs of columns in a counts matrix Parameters ---------- counts : 2D array_like of ints or floats Matrix containing count/abundance data where each row contains counts of observations in a given sample. ids : iterable of strs, optional Identifiers for each sample in ``counts``. metric : str, optional The name of the pairwise distance function to use when generating pairwise distances. See the scipy ``pdist`` docs, linked under *See Also*, for available metrics. Returns ------- skbio.DistanceMatrix Distances between all pairs of samples (i.e., rows). The number of row and columns will be equal to the number of rows in ``counts``. Raises ------ ValueError If ``len(ids) != len(counts)``. See Also -------- scipy.spatial.distance.pdist pw_distances_from_table """ num_samples = len(counts) if ids is not None and num_samples != len(ids): raise ValueError( "Number of rows in counts must be equal to number of provided " "ids.") distances = pdist(counts, metric) return DistanceMatrix( squareform(distances, force='tomatrix', checks=False), ids)
def single_file_upgma(input_file, output_file): # read in dist matrix dist_mat = DistanceMatrix.read(input_file) # SciPy uses average as UPGMA: # http://docs.scipy.org/doc/scipy/reference/generated/ # scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage linkage_matrix = linkage(dist_mat.condensed_form(), method='average') tree = TreeNode.from_linkage_matrix(linkage_matrix, dist_mat.ids) # write output f = open(output_file, 'w') try: f.write(tree.to_newick(with_distances=True)) except AttributeError: if c is None: raise RuntimeError("""input file %s did not make a UPGMA tree. Ensure it has more than one sample present""" % (str(input_file), )) raise f.close()
def single_file_upgma(input_file, output_file): # read in dist matrix dist_mat = DistanceMatrix.read(input_file) # SciPy uses average as UPGMA: # http://docs.scipy.org/doc/scipy/reference/generated/ # scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage linkage_matrix = linkage(dist_mat.condensed_form(), method='average') tree = TreeNode.from_linkage_matrix(linkage_matrix, dist_mat.ids) # write output f = open(output_file, 'w') try: f.write(tree.to_newick(with_distances=True)) except AttributeError: if c is None: raise RuntimeError("""input file %s did not make a UPGMA tree. Ensure it has more than one sample present""" % (str(input_file),)) raise f.close()
def _compute_collapsed_dm(dm, i, j, disallow_negative_branch_length, new_node_id): """Return the distance matrix resulting from joining ids i and j in a node. If the input distance matrix has shape ``(n, n)``, the result will have shape ``(n-1, n-1)`` as the ids `i` and `j` are collapsed to a single new ids. """ in_n = dm.shape[0] out_n = in_n - 1 out_ids = [new_node_id] out_ids.extend([e for e in dm.ids if e not in (i, j)]) result = np.zeros((out_n, out_n)) for idx1, out_id1 in enumerate(out_ids[1:]): result[0, idx1 + 1] = result[idx1 + 1, 0] = _otu_to_new_node( dm, i, j, out_id1, disallow_negative_branch_length) for idx2, out_id2 in enumerate(out_ids[1:idx1 + 1]): result[idx1+1, idx2+1] = result[idx2+1, idx1+1] = \ dm[out_id1, out_id2] return DistanceMatrix(result, out_ids)
def setUp(self): self.dm100 = DistanceMatrix.read(get_data_path('distMatrix_100.txt')) self.dm20 = DistanceMatrix.read(get_data_path('distMatrix_20_f5.txt'))
samples = otu_table.index graph_dm = pd.DataFrame(graph_dm, index=samples, columns=samples) graph_dm.to_csv('../results/aitchison.txt', '\t') # Read in graph_dm graph_dm = pd.read_csv('../results/unconnected_aitchison.txt', sep='\t', index_col=0) # table = pd.read_table('../data/skinmap_chemiFrac_test.txt', # sep='\t', index_col=0) graph_dm.index = table.columns graph_dm.columns = table.columns # _dm = pw_distances('braycurtis', table.values, table.index.values) # _dm.write('../results/braycurtis.txt') _dm = DistanceMatrix(graph_dm.values + graph_dm.values.T) _dm.ids = graph_dm.index pcoa_v = pcoa(_dm) fig = plt.figure(3) plt.plot(pcoa_v.samples['PC1'], pcoa_v.samples['PC2'], 'ob') # plt.plot(pcoa_v.eigvecs[not_stressed, 0], # pcoa_v.eigvecs[not_stressed, 1], # 'o', c='#FFFFFF', label='Before stress') # plt.plot(pcoa_v.eigvecs[stressed, 0], # pcoa_v.eigvecs[stressed, 1], # 'o', c='#999999', label='After stress') # plt.legend(loc=3) #plt.title('Weighted Aitchison on Coral data') #fig.savefig('../results/coral_chemifrac.png')
def mantel(x, y, method='pearson', permutations=999, alternative='two-sided'): """Compute correlation between distance matrices using the Mantel test. The Mantel test compares two distance matrices by computing the correlation between the distances in the lower (or upper) triangular portions of the symmetric distance matrices. Correlation can be computed using Pearson's product-moment correlation coefficient or Spearman's rank correlation coefficient. As defined in [1]_, the Mantel test computes a test statistic :math:`r_M` given two symmetric distance matrices :math:`D_X` and :math:`D_Y`. :math:`r_M` is defined as .. math:: r_M=\\frac{1}{d-1}\\sum_{i=1}^{n-1}\\sum_{j=i+1}^{n} stand(D_X)_{ij}stand(D_Y)_{ij} where .. math:: d=\\frac{n(n-1)}{2} and :math:`n` is the number of rows/columns in each of the distance matrices. :math:`stand(D_X)` and :math:`stand(D_Y)` are distance matrices with their upper triangles containing standardized distances. Note that since :math:`D_X` and :math:`D_Y` are symmetric, the lower triangular portions of the matrices could equivalently have been used instead of the upper triangular portions (the current function behaves in this manner). If ``method='spearman'``, the above equation operates on ranked distances instead of the original distances. Statistical significance is assessed via a permutation test. The rows and columns of the first distance matrix (`x`) are randomly permuted a number of times (controlled via `permutations`). A correlation coefficient is computed for each permutation and the p-value is the proportion of permuted correlation coefficients that are equal to or more extreme than the original (unpermuted) correlation coefficient. Whether a permuted correlation coefficient is "more extreme" than the original correlation coefficient depends on the alternative hypothesis (controlled via `alternative`). Parameters ---------- x, y : array_like or DistanceMatrix Input distance matrices to compare. Both matrices must have the same shape and be at least 3x3 in size. If ``array_like``, will be cast to ``DistanceMatrix`` (thus the requirements of a valid ``DistanceMatrix`` apply to both `x` and `y`, such as symmetry and hollowness). If inputs are already ``DistanceMatrix`` instances, the IDs do not need to match between them; they are assumed to both be in the same order regardless of their IDs (the underlying data matrix is the only thing considered by this function). method : {'pearson', 'spearman'} Method used to compute the correlation between distance matrices. permutations : int, optional Number of times to randomly permute `x` when assessing statistical significance. Must be greater than or equal to zero. If zero, statistical significance calculations will be skipped and the p-value will be ``np.nan``. alternative : {'two-sided', 'greater', 'less'} Alternative hypothesis to use when calculating statistical significance. The default ``'two-sided'`` alternative hypothesis calculates the proportion of permuted correlation coefficients whose magnitude (i.e. after taking the absolute value) is greater than or equal to the absolute value of the original correlation coefficient. ``'greater'`` calculates the proportion of permuted coefficients that are greater than or equal to the original coefficient. ``'less'`` calculates the proportion of permuted coefficients that are less than or equal to the original coefficient. Returns ------- tuple of floats Correlation coefficient and p-value of the test. Raises ------ ValueError If `x` and `y` are not the same shape and at least 3x3 in size, or an invalid `method`, number of `permutations`, or `alternative` are provided. See Also -------- DistanceMatrix scipy.stats.pearsonr scipy.stats.spearmanr Notes ----- The Mantel test was first described in [2]_. The general algorithm and interface are similar to ``vegan::mantel``, available in R's vegan package [3]_. ``np.nan`` will be returned for the p-value if `permutations` is zero or if the correlation coefficient is ``np.nan``. The correlation coefficient will be ``np.nan`` if one or both of the inputs does not have any variation (i.e. the distances are all constant) and ``method='spearman'``. References ---------- .. [1] Legendre, P. and Legendre, L. (2012) Numerical Ecology. 3rd English Edition. Elsevier. .. [2] Mantel, N. (1967). "The detection of disease clustering and a generalized regression approach". Cancer Research 27 (2): 209-220. PMID 6018555. .. [3] http://cran.r-project.org/web/packages/vegan/index.html Examples -------- Define two 3x3 distance matrices: >>> x = [[0, 1, 2], ... [1, 0, 3], ... [2, 3, 0]] >>> y = [[0, 2, 7], ... [2, 0, 6], ... [7, 6, 0]] Compute the Pearson correlation between them and assess significance using a two-sided test with 999 permutations: >>> coeff, p_value = mantel(x, y) >>> round(coeff, 4) 0.7559 Thus, we see a moderate-to-strong positive correlation (:math:`r_M=0.7559`) between the two matrices. """ if method == 'pearson': corr_func = pearsonr elif method == 'spearman': corr_func = spearmanr else: raise ValueError("Invalid correlation method '%s'." % method) if permutations < 0: raise ValueError("Number of permutations must be greater than or " "equal to zero.") if alternative not in ('two-sided', 'greater', 'less'): raise ValueError("Invalid alternative hypothesis '%s'." % alternative) x = DistanceMatrix(x) y = DistanceMatrix(y) if x.shape != y.shape: raise ValueError("Distance matrices must have the same shape.") if x.shape[0] < 3: raise ValueError("Distance matrices must be at least 3x3 in size.") x_flat = x.condensed_form() y_flat = y.condensed_form() orig_stat = corr_func(x_flat, y_flat)[0] if permutations == 0 or np.isnan(orig_stat): p_value = np.nan else: perm_gen = (corr_func(x.permute(condensed=True), y_flat)[0] for _ in range(permutations)) permuted_stats = np.fromiter(perm_gen, np.float, count=permutations) if alternative == 'two-sided': count_better = (np.absolute(permuted_stats) >= np.absolute(orig_stat)).sum() elif alternative == 'greater': count_better = (permuted_stats >= orig_stat).sum() else: count_better = (permuted_stats <= orig_stat).sum() p_value = (count_better + 1) / (permutations + 1) return orig_stat, p_value
def compare_categories(dm_fp, map_fp, method, categories, num_perms, out_dir): """Runs the specified statistical method using the category of interest. This method does not return anything; all output is written to results files in out_dir. Arguments: dm_fp - filepath to the input distance matrix map_fp - filepath to the input metadata mapping file categories - list of categories in the metadata mapping file to consider in the statistical test. Multiple categories will only be considered if method is 'bioenv', otherwise only the first category will be considered num_perms - the number of permutations to use when calculating the p-value. If method is 'bioenv' or 'morans_i', this parameter will be ignored as they are not permutation-based methods out_dir - path to the output directory where results files will be written. It is assumed that this directory already exists and we have write permissions to it """ # Make sure we were passed a list of categories, not a single string. if not isinstance(categories, ListType): raise TypeError("The supplied categories must be a list of " "strings.") # Special case: we do not allow SampleID as it is not a category, neither # in data structure representation nor in terms of a statistical test (no # groups are formed since all entries are unique IDs). if 'SampleID' in categories: raise ValueError("Cannot use SampleID as a category because it is a " "unique identifier for each sample, and thus does " "not create groups of samples (nor can it be used as " "a numeric category in Moran's I or BIO-ENV " "analyses). Please choose a different metadata " "column to perform statistical tests on.") dm = DistanceMatrix.read(dm_fp) if method in ('anosim', 'permanova', 'bioenv'): with open(map_fp, 'U') as map_f: md_dict = parse_mapping_file_to_dict(map_f)[0] df = pd.DataFrame.from_dict(md_dict, orient='index') out_fp = join(out_dir, '%s_results.txt' % method) if method in ('anosim', 'permanova'): if method == 'anosim': method_cls = ANOSIM elif method == 'permanova': method_cls = PERMANOVA method_inst = method_cls(dm, df, column=categories[0]) results = method_inst(num_perms) with open(out_fp, 'w') as out_f: out_f.write(results.summary()) elif method == 'bioenv': results = bioenv(dm, df, columns=categories) results.to_csv(out_fp, sep='\t') else: # Remove any samples from the mapping file that aren't in the distance # matrix (important for validation checks). Use strict=True so that an # error is raised if the distance matrix contains any samples that # aren't in the mapping file. with open(map_fp, 'U') as map_f: md_map = MetadataMap.parseMetadataMap(map_f) md_map.filterSamples(dm.ids, strict=True) # These methods are run in R. Input validation must be done here before # running the R commands. if method in ['adonis', 'morans_i', 'mrpp', 'permdisp', 'dbrda']: # Check to make sure all categories passed in are in mapping file # and are not all the same value. for category in categories: if not category in md_map.CategoryNames: raise ValueError("Category '%s' not found in mapping file " "columns." % category) if md_map.hasSingleCategoryValue(category): raise ValueError("All values in category '%s' are the " "same. The statistical method '%s' " "cannot operate on a category that " "creates only a single group of samples " "(e.g. there are no 'between' distances " "because there is only a single group)." % (category, method)) # Build the command arguments string. command_args = ['-d %s -m %s -c %s -o %s' % (dm_fp, map_fp, categories[0], out_dir)] if method == 'morans_i': # Moran's I requires only numeric categories. for category in categories: if not md_map.isNumericCategory(category): raise TypeError("The category '%s' is not numeric. " "Not all values could be converted to " "numbers." % category) else: # The rest require groups of samples, so the category values # cannot all be unique. for category in categories: if md_map.hasUniqueCategoryValues(category): raise ValueError("All values in category '%s' are " "unique. This statistical method " "cannot operate on a category with " "unique values (e.g. there are no " "'within' distances because each " "group of samples contains only a " "single sample)." % category) # Only Moran's I doesn't accept a number of permutations. if num_perms < 0: raise ValueError("The number of permutations must be " "greater than or equal to zero.") command_args[0] += ' -n %d' % num_perms rex = RExecutor(TmpDir=get_qiime_temp_dir()) rex(command_args, '%s.r' % method, output_dir=out_dir) else: raise ValueError("Unrecognized method '%s'. Valid methods: %r" % (method, methods))
def pwmantel(dms, labels=None, method='pearson', permutations=999, alternative='two-sided', strict=True, lookup=None): """Run Mantel tests for every pair of given distance matrices. Runs a Mantel test for each pair of distance matrices and collates the results in a ``DataFrame``. Distance matrices do not need to be in the same ID order if they are ``DistanceMatrix`` instances. Distance matrices will be re-ordered prior to running each pairwise test, and if ``strict=False``, IDs that don't match between a pair of distance matrices will be dropped prior to running the test (otherwise a ``ValueError`` will be raised if there are nonmatching IDs between any pair of distance matrices). Parameters ---------- dms : iterable of DistanceMatrix objects, array_like objects, or filepaths to distance matrices. If they are ``array_like``, no reordering or matching of IDs will be performed. labels : iterable of str or int, optional Labels for each distance matrix in `dms`. These are used in the results ``DataFrame`` to identify the pair of distance matrices used in a pairwise Mantel test. If ``None``, defaults to monotonically-increasing integers starting at zero. method : {'pearson', 'spearman'} Correlation method. See ``mantel`` function for more details. permutations : int, optional Number of permutations. See ``mantel`` function for more details. alternative : {'two-sided', 'greater', 'less'} Alternative hypothesis. See ``mantel`` function for more details. strict : bool, optional Handling of nonmatching IDs. See ``mantel`` function for more details. lookup : dict, optional Map existing IDs to new IDs. See ``mantel`` function for more details. Returns ------- pandas.DataFrame ``DataFrame`` containing the results of each pairwise test (one per row). Includes the number of objects considered in each test as column ``n`` (after applying `lookup` and filtering nonmatching IDs if ``strict=False``). Column ``p-value`` will display p-values as ``NaN`` if p-values could not be computed (they are stored as ``np.nan`` within the ``DataFrame``; see ``mantel`` for more details). See Also -------- mantel DistanceMatrix.read Notes -------- Passing a list of filepaths can be useful as it allows for a smaller amount of memory consumption as it only loads two matrices at a time as opposed to loading all distance matrices into memory. Examples -------- Import the functionality we'll use in the following examples: >>> from skbio import DistanceMatrix >>> from skbio.stats.distance import pwmantel Define three 3x3 distance matrices: >>> x = DistanceMatrix([[0, 1, 2], ... [1, 0, 3], ... [2, 3, 0]]) >>> y = DistanceMatrix([[0, 2, 7], ... [2, 0, 6], ... [7, 6, 0]]) >>> z = DistanceMatrix([[0, 5, 6], ... [5, 0, 1], ... [6, 1, 0]]) Run Mantel tests for each pair of distance matrices (there are 3 possible pairs): >>> pwmantel((x, y, z), labels=('x', 'y', 'z'), ... permutations=0) # doctest: +NORMALIZE_WHITESPACE statistic p-value n method permutations alternative dm1 dm2 x y 0.755929 NaN 3 pearson 0 two-sided z -0.755929 NaN 3 pearson 0 two-sided y z -0.142857 NaN 3 pearson 0 two-sided Note that we passed ``permutations=0`` to suppress significance tests; the p-values in the output are labelled ``NaN``. """ num_dms = len(dms) if num_dms < 2: raise ValueError("Must provide at least two distance matrices.") if labels is None: labels = range(num_dms) else: if num_dms != len(labels): raise ValueError("Number of labels must match the number of " "distance matrices.") if len(set(labels)) != len(labels): raise ValueError("Labels must be unique.") num_combs = scipy.special.comb(num_dms, 2, exact=True) results_dtype = [('dm1', object), ('dm2', object), ('statistic', float), ('p-value', float), ('n', int), ('method', object), ('permutations', int), ('alternative', object)] results = np.empty(num_combs, dtype=results_dtype) for i, pair in enumerate(combinations(zip(labels, dms), 2)): (xlabel, x), (ylabel, y) = pair if isinstance(x, str): x = DistanceMatrix.read(x) if isinstance(y, str): y = DistanceMatrix.read(y) stat, p_val, n = mantel(x, y, method=method, permutations=permutations, alternative=alternative, strict=strict, lookup=lookup) results[i] = (xlabel, ylabel, stat, p_val, n, method, permutations, alternative) return pd.DataFrame.from_records(results, index=('dm1', 'dm2'))