import numpy as np from sklearn import datasets from sklearn.cross_validation import train_test_split from chainer import cuda import skchainer as skc # cuda.init() digits = datasets.load_digits() X = digits.data.astype(np.float32) y = digits.target.astype(np.int32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) tuned_parameters = [ {'opt_type': ['sgd'], 'opt_lr': [0.01, 0.001], 'net_hidden': [50, 100, 200, 300]}, {'opt_type': ['adagrad'], 'opt_lr': [0.01, 0.001], 'net_hidden': [50, 100, 200, 300]}, {'opt_type': ['adam'], 'net_hidden': [50, 100, 200, 300]} ] model = skc.LogisticRegressionEstimator(epochs=50, net_out=10, threshold=1e-6) skc.grid_search(model, tuned_parameters, X_train, y_train, X_test, y_test, score='accuracy')
digits = datasets.load_digits() X = digits.data.astype(np.float32) y = digits.target.astype(np.int32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) tuned_parameters = [{ 'opt_type': ['sgd'], 'opt_lr': [0.01, 0.001], 'net_hidden': [50, 100, 200, 300] }, { 'opt_type': ['adagrad'], 'opt_lr': [0.01, 0.001], 'net_hidden': [50, 100, 200, 300] }, { 'opt_type': ['adam'], 'net_hidden': [50, 100, 200, 300] }] model = skc.LogisticRegressionEstimator(epochs=50, net_out=10, threshold=1e-6) skc.grid_search(model, tuned_parameters, X_train, y_train, X_test, y_test, score='accuracy')
parser.add_argument('--n_jobs', type=int, default=-1) parser.add_argument('--n_iter', type=int, default=10) parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--epochs', type=int, default=1) args = parser.parse_args() model = skc.RNNCharEstimator(epochs=args.epochs, vocab_size=len(vocab), threshold=1e-6) if args.mode == 'grid': tuned_parameters = [ {'net_type': ['irnn'], 'opt_type': ['adam'], 'opt_lr': [0.01], 'net_hidden': [200], 'batch_size': [3, 4, 5, 6, 8, 10, 15], 'gpu': [args.gpu]} ] skc.grid_search(model, tuned_parameters, X_train, y_train, X_test, y_test, score='accuracy', n_jobs=args.n_jobs) elif args.mode == 'random': tuned_parameters = { 'net_type': ['irnn'], 'opt_type': ['adam', 'adagrad'], 'net_hidden': sp.stats.norm(300, 100) } skc.random_search(model, tuned_parameters, X_train, y_train, X_test, y_test, score='accuracy', n_jobs=args.n_jobs, n_iter=args.n_iter) elif args.mode == 'time': print("hello") # predict ----------------------- # print model.predict(X[1:5,])