Esempio n. 1
0
 def test_pinv_complex128(self):
     a = np.asarray(np.random.rand(8, 4) + \
                    1j*np.random.rand(8, 4), np.complex128)
     a_gpu = gpuarray.to_gpu(a)
     a_inv_gpu = linalg.pinv(a_gpu)
     assert np.allclose(np.linalg.pinv(a), a_inv_gpu.get(),
                        atol=atol_float64)
Esempio n. 2
0
 def test_pinv_complex128(self):
     a = np.asarray(np.random.rand(8, 4) + \
                    1j*np.random.rand(8, 4), np.complex128)
     a_gpu = gpuarray.to_gpu(a)
     a_inv_gpu = linalg.pinv(a_gpu)
     assert np.allclose(np.linalg.pinv(a), a_inv_gpu.get(),
                        atol=atol_float64)
Esempio n. 3
0
 def test_pinv_float32(self):
     a = np.asarray(np.random.rand(8, 4), np.float32)
     a_gpu = gpuarray.to_gpu(a)
     a_inv_gpu = linalg.pinv(a_gpu)
     assert np.allclose(np.linalg.pinv(a),
                        a_inv_gpu.get(),
                        atol=atol_float32)
Esempio n. 4
0
    def ginverse(self, A):
        A = A.transpose()
        #print("INV", A.shape, type(A), A.flags.c_contiguous, A.flags.f_contiguous)
        #A = gpuarray.to_gpu(np.array(A.get(), dtype=A.dtype, order='C'))
        #print("INV", A.shape, type(A), A.flags.c_contiguous, A.flags.f_contiguous)

        out = linalg.pinv(A)
        out = out.transpose()
        #o = out.get()
        #print("Sum", np.sum(np.subtract(o, o.T)))
        #print("INV2", out.shape, type(out), out.flags.c_contiguous, out.flags.f_contiguous)
        #out = gpuarray.to_gpu(np.array(out.get(), dtype=out.dtype, order='F'))
        #A = A.get()
        #A = np.nan_to_num(A)
        #out = self.togpu(la.pinv(A), dtype=A.dtype)
        sync_only()
        return out
def itkrm(data,K,S,maxitr,startD=np.array([1])):
    M, N = data.shape
    if startD.all()==1:
        D_init = np.random.randn(M, K)
    else:
        D_init = startD
    Y = data
    I_D = np.zeros((S,N), dtype=np.int32)
#    N_timer.log(0,log_s='20 data test, 14/03',open_file=1)
    #Algorithm
    D_old = D_init
    for i in range(maxitr):
        start_time = N_timer.cont_timer(0,0)
        N_timer.Timer(i,maxitr)
        for n in range(N):
            I_D[:,n] = max_atoms(D_old,Y[:,n],S)
        D_new = np.zeros((M,K))
        for n in range(N):
            print(n)
            to_proj = D_old[:,I_D[:,n]]
            X_GPU = gpuarray.to_gpu(to_proj.T)
            Z_GPU = linalg.pinv(X_GPU, lib='cusolver')
#            RES_GPU = linalg.dot(Z_GPU,X_GPU)
            to_proj = Z_GPU.get() @ to_proj.T
#            to_proj = proj(to_proj)
            matproj = np.repeat(np.array([to_proj @ Y[:,n] ]).T, S, axis=1)
            vecproj = D_old[:,I_D[:,n]] @ np.diag(np.diag(D_old[:,I_D[:,n]].T @ D_old[:,I_D[:,n]] )**-1*(D_old[:,I_D[:,n]].T@Y[:,n]))
            signer = np.sign(D_old[:,I_D[:,n]].T@Y[:,n])
            D_new[:,I_D[:,n]] = D_new[:,I_D[:,n]] + (np.repeat(np.array([Y[:,n]]).T, S, axis=1) - matproj + vecproj)*signer
#            for k in I_D[:,n]:
#                vecproj = D_old[:,k] * (D_old[:,k].T@D_old[:,k])**-1 * (D_old[:,k].T@Y[:,n])
#                signer = np.sign(D_old[:,I_D[:,n]].T@Y[:,n])
#                D_new[:,k] = D_new[:,k]+(Y[:,n]-matproj+vecproj[:,m])*signer
    #hugget fra Karin
        scale = np.sum(D_new*D_new, axis=0)
        iszero = np.where(scale < 0.00001)[0]
        D_new[:,iszero] = np.random.randn(M, len(iszero))
    #end hugget

        D_new = normalize_mat_col(D_new)
        D_old = 1*D_new
#        N_timer.log(N_timer.cont_timer(start_time,1))
#    N_timer.log("end",open_file=-1)
    return D_old
Esempio n. 6
0
import pycuda.autoinit
import pycuda.driver as drv
import pycuda.gpuarray as gpuarray
import numpy as np

import skcuda.linalg as culinalg
import skcuda.misc as cumisc
culinalg.init()

# Double precision is only supported by devices with compute
# capability >= 1.3:
import string
import scikits.cuda.cula as cula
demo_types = [np.float32, np.complex64]
if cula._libcula_toolkit == 'premium' and \
        cumisc.get_compute_capability(pycuda.autoinit.device) >= 1.3:
    demo_types.extend([np.float64, np.complex128])

for t in demo_types:
    print('Testing pinv for type ' + str(np.dtype(t)))
    a = np.asarray((np.random.rand(50, 50) - 0.5) / 10, t)
    a_gpu = gpuarray.to_gpu(a)
    a_inv_gpu = culinalg.pinv(a_gpu)

    print('Success status: ',
          np.allclose(np.linalg.pinv(a), a_inv_gpu.get(), atol=1e-2))
    print('Maximum error: ',
          np.max(np.abs(np.linalg.pinv(a) - a_inv_gpu.get())))
    print('')
START = time()
foo[BLOCKS_PER_GRID, THREADS_PER_BLOCK](C_GPU)
print(time() - START)
# Copy the result back to the host
C = C_GPU.copy_to_host()

print(C)

A = np.random.rand(2, 2)
CU_A = cuda.device_array_like(A)
PYCU_A = pycuda.gpuarray.GPUArray(
    shape=CU_A.shape,
    dtype=CU_A.dtype,
    gpudata=CU_A.gpu_data.device_ctypes_pointer.value,
    strides=CU_A.strides)
PYCU_A.get()

X = np.asarray(np.random.rand(57, 57), np.float32)
Y = np.asarray(np.random.rand(4, 4), np.float32)
X_GPU = gpuarray.to_gpu(X)
Y_GPU = gpuarray.to_gpu(Y)

START = time()
Z_GPU = linalg.pinv(PYCU_A, lib='cusolver')
GPU_RES = Z_GPU.get()
print(time() - START)

START = time()
CPU_RES = np.linalg.pinv(A)
print(time() - START)
Esempio n. 8
0
 def test_pinv_float32(self):
     a = np.asarray(np.random.rand(8, 4), np.float32)
     a_gpu = gpuarray.to_gpu(a)
     a_inv_gpu = linalg.pinv(a_gpu)
     assert np.allclose(np.linalg.pinv(a), a_inv_gpu.get(),
                        atol=atol_float32)
Esempio n. 9
0
@author: Niels
"""
import math
import os
from time import time
import numpy as np
import pycuda.autoinit
import scipy as sp
import pycuda.gpuarray as gpuarray
import skcuda.linalg as linalg
from numba import cuda
if os.system("cl.exe"):
    os.environ[
        'PATH'] += ';' + r"C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin"
if os.system("cl.exe"):
    raise RuntimeError("cl.exe still not found, path probably incorrect")


@cuda.jit
def GPU_pin(A, B):
    B = np.linalg.pinv(A)
    return B


to_proj = A.T
To_proj = proj(to_proj)
X_GPU = gpuarray.to_gpu(to_proj.T)
Z_GPU = linalg.pinv(X_GPU, lib='cusolver')
to_proj = to_proj @ Z_GPU.get().T
Esempio n. 10
0
from __future__ import print_function

import pycuda.autoinit
import pycuda.driver as drv
import pycuda.gpuarray as gpuarray
import numpy as np

import skcuda.linalg as culinalg
import skcuda.misc as cumisc
culinalg.init()

# Double precision is only supported by devices with compute
# capability >= 1.3:
import string
import scikits.cuda.cula as cula
demo_types = [np.float32, np.complex64]
if cula._libcula_toolkit == 'premium' and \
        cumisc.get_compute_capability(pycuda.autoinit.device) >= 1.3:
    demo_types.extend([np.float64, np.complex128])

for t in demo_types:
    print('Testing pinv for type ' + str(np.dtype(t)))
    a = np.asarray((np.random.rand(50, 50) - 0.5) / 10, t)
    a_gpu = gpuarray.to_gpu(a)
    a_inv_gpu = culinalg.pinv(a_gpu)

    print('Success status: ', np.allclose(np.linalg.pinv(a), a_inv_gpu.get(),
                                          atol=1e-2))
    print('Maximum error: ', np.max(np.abs(np.linalg.pinv(a) - a_inv_gpu.get())))
    print('')