Esempio n. 1
0
def test_predict_hard_voting():
    X = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([0, 1])

    model1 = LogisticRegression(solver="liblinear")
    model2 = LogisticRegression(solver="lbfgs")
    model1.fit(X, y)
    model2.fit(X, y)

    clf = postprocessing.SimpleVoter([("model1", model1), ("model2", model2)],
                                     voting="hard",
                                     classes=model1.classes_)
    pred = clf.predict(X)
    assert np.allclose(pred, y)
Esempio n. 2
0
def test_predict_strings():
    X = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array(["pizza", "tacos"])

    model1 = LogisticRegression(solver="liblinear")
    model2 = LogisticRegression(solver="lbfgs")
    model1.fit(X, y)
    model2.fit(X, y)

    clf = postprocessing.SimpleVoter([("model1", model1), ("model2", model2)],
                                     voting="hard",
                                     classes=model1.classes_)
    pred = clf.predict(X)
    assert list(pred) == list(y)
Esempio n. 3
0
def test_predict():
    X = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([0, 1])

    model1 = LogisticRegression(solver="liblinear")
    model2 = LogisticRegression(solver="lbfgs")
    model1.fit(X, y)
    model2.fit(X, y)

    clf = postprocessing.SimpleVoter([("model1", model1), ("model2", model2)],
                                     voting="soft",
                                     classes=model1.classes_)
    pred = clf.predict(X)
    probs = clf.predict_proba(X)
    assert pred.shape == y.shape