Esempio n. 1
0
 def test_conv2d(self):
     tf.set_random_seed(42)
     batch_size = 32
     input_shape = (10, 10)
     n_filters = 7
     filter_shape = (5, 5)
     vals = np.random.randn(batch_size, input_shape[0], input_shape[1], 1)
     with self.test_session() as sess:
         tensor_in = tf.placeholder(tf.float32, [batch_size, input_shape[0],
                                                 input_shape[1], 1])
         res = ops.conv2d(tensor_in, n_filters, filter_shape)
         sess.run(tf.initialize_all_variables())
         conv = sess.run(res, feed_dict={tensor_in.name: vals})
     self.assertEqual(conv.shape, (batch_size, input_shape[0],
                                   input_shape[1], n_filters))
Esempio n. 2
0
 def test_conv2d(self):
     tf.set_random_seed(42)
     batch_size = 32
     input_shape = (10, 10)
     n_filters = 7
     filter_shape = (5, 5)
     vals = np.random.randn(batch_size, input_shape[0], input_shape[1], 1)
     with self.test_session() as sess:
         tensor_in = tf.placeholder(
             tf.float32, [batch_size, input_shape[0], input_shape[1], 1])
         res = ops.conv2d(tensor_in, n_filters, filter_shape)
         sess.run(tf.initialize_all_variables())
         conv = sess.run(res, feed_dict={tensor_in.name: vals})
     self.assertEqual(
         conv.shape,
         (batch_size, input_shape[0], input_shape[1], n_filters))