Esempio n. 1
0
def cutouts_plot(outpath, base_name, order_num, obj, flat, top_trace, bot_trace, trace):
    
    pl.figure('traces', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order cutouts, {}, order {}'.format(base_name, order_num), fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj))
    except:
        obj_plot.imshow(obj)
    obj_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), trace, 'y-', linewidth=1.5)
    obj_plot.set_title('object')
#     obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])
    
    flat_plot = pl.subplot(2, 1, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat))
    except:
        flat_plot.imshow(flat)
    flat_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)    
    flat_plot.plot(np.arange(1024), trace, 'y-', linewidth=1.5)    
    flat_plot.set_title('flat')
#     flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num, 'cutouts.png'))
    pl.close()
Esempio n. 2
0
def sparect_plot(outpath, base_name, order_num, obj, flat):

    pl.figure('spatially rectified', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('spatially rectified, {}, order {}'.format(base_name, order_num), fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj))
    except:
        obj_plot.imshow(obj)
    obj_plot.set_title('object')
#     obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])
    
    flat_plot = pl.subplot(2, 1, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat))
    except:
        flat_plot.imshow(flat)
    flat_plot.set_title('flat')
#     flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num, 'sparect.png'))
    pl.close()
Esempio n. 3
0
def traces_plot(outpath, base_name, order_num, obj, flat, top_trace, bot_trace):
    
    pl.figure('traces', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order edge traces, {}, order {}'.format(base_name, order_num), fontsize=14)
    pl.set_cmap('Blues_r')
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    obj_plot.imshow(exposure.equalize_hist(obj))
    obj_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)

    obj_plot.set_title('object')
    obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    
    flat_plot = pl.subplot(1, 2, 2)
    flat_plot.imshow(exposure.equalize_hist(flat))
    flat_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)    
    flat_plot.set_title('flat')
    flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num, 'traces.png'))
    pl.close()
Esempio n. 4
0
def tops_bots_plot(outpath, base_name, tops, bots):
    
    pl.figure('edges', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('top and bottom order edges, {}'.format(base_name), fontsize=14)
#     pl.set_cmap('Blues_r')
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(tops))
    except:
        obj_plot.imshow(tops)

    obj_plot.set_title('top edges')
    obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    
    flat_plot = pl.subplot(1, 2, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(bots))
    except:
        flat_plot.imshow(bots)
    flat_plot.set_title('bottom edges')
    flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, None, 'top_bot_edges.png'))
    pl.close()
def align_img(image_name, loss_fn=sum_of_squared_diff, max_disp = 15, big=False, name=None, hist_eq = False):
    b,g,r = get_bgr(image_name)

    if hist_eq == True:
        b, g, r = exposure.equalize_hist(b), exposure.equalize_hist(g), exposure.equalize_hist(r)

    print("Aligning green and blue: ")
    ag = align(g, b, loss_fn=loss_fn, max_disp = max_disp, big=big, name=name)
    print("Aligning blue and red: ")
    ar = align(r, b, loss_fn=loss_fn, max_disp = max_disp, big=big, name=name)
    # create a color image
    im_out = np.dstack([ar, ag, b])
    plt.show()

    # save the image
    iname = image_name.split('.')
    iname[-1] = 'jpg'
    image_name = '.'.join(iname)
    fname = 'out_' + image_name
    skio.imsave(fname, im_out)

    # display the image
    skio.imshow(im_out)
    plt.show()
    skio.show()
Esempio n. 6
0
def test_equalize_masked():
    img = skimage.img_as_float(test_img)
    mask = np.zeros(test_img.shape)
    mask[50:150, 50:250] = 1
    img_mask_eq = exposure.equalize_hist(img, mask=mask)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_mask_eq)
    check_cdf_slope(cdf)

    assert not (img_eq == img_mask_eq).all()
def slidingWindow(P,inX=3,outX=32,inY=3,outY=64,maxM=50,norm=True):
	""" Enhance the constrast

		Cut off extreme values and demean the image
		Utilize scipy convolve2d to get the mean at a given pixel
		Remove local mean with inner exclusion region

		Args:
			P: 2-d numpy array image
			inX: inner exclusion region in the x-dimension
			outX: length of the window in the x-dimension
			inY: inner exclusion region in the y-dimension
			outY: length of the window in the y-dimension
			maxM: size of the output image in the y-dimension
			norm: boolean to cut off extreme values

		Returns:
			Q: 2-d numpy contrast enhanced
	"""
	Q = P.copy()
	m, n = Q.shape
	
	Q = exposure.equalize_hist(Q.astype('Float32'), nbins = 65)
	Q = detrend(Q.astype('Float32'), axis = 1)
	Q = detrend(Q.astype('Float32'), axis = 0)
	Q = wiener(Q.astype('Float32'), 4)

	return Q[:maxM,:]
Esempio n. 8
0
def twoDimOrderPlot(outpath, base_name, title, obj_name, base_filename, order_num, data, x):
    pl.figure('2d order image', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.title(title + ', ' + base_name + ", order " + str(order_num), fontsize=14)
    pl.xlabel('wavelength($\AA$)', fontsize=12)
    pl.ylabel('row (pixel)', fontsize=12)
    #pl.imshow(img, aspect='auto')
    #pl.imshow(data, vmin=0, vmax=1024, aspect='auto')
    
    pl.imshow(exposure.equalize_hist(data), origin='lower', 
                  extent=[x[0], x[-1], 0, data.shape[0]], aspect='auto')      
#     from matplotlib import colors
#     norm = colors.LogNorm(data.mean() + 0.5 * data.std(), data.max(), clip='True')
#     pl.imshow(data, norm=norm, origin='lower',
#                   extent=[x[0], x[-1], 0, data.shape[0]], aspect='auto')               
    pl.colorbar()
    pl.set_cmap('jet')
#     pl.set_cmap('Blues_r')
    fn = constructFileName(outpath, base_name, order_num, base_filename)
    pl.savefig(fn)
    log_fn(fn)
    pl.close()
    
#     np.save(fn[:fn.rfind('.')], data)
    
    return
Esempio n. 9
0
def mirror_mirror():
    pca, clf = gen_classifier()
    cam = cv2.VideoCapture(0)

    last_emo = []
    while True:
        ret, img = cam.read()
        if not ret:
            continue

        gray = cv2.cvtColor(img, cv.CV_BGR2GRAY)
        faces = detect_and_scale_face(gray)
        if not faces:
            continue

        for scaled in faces:
            test_x = exposure.equalize_hist(scaled.reshape((1, -1)))
            face_pca = pca.transform(test_x)
            pred = int(clf.predict(face_pca)[0])
            last_emo.append(pred)

            if len(last_emo) == 4:
                last_emo.pop(0)
                if last_emo[0] != OTHER_LABEL and \
                   np.all(np.array(last_emo) == last_emo[0]):
                    sb.call(['say', TARGET_NAMES[pred]])
Esempio n. 10
0
def preprocessing(image):
    # Contrast stretching
    #TODO TEST
    #p2, p98 = np.percentile(image, (2, 98))
    #image_rescale = exposure.rescale_intensity(image, in_range=(p2, p98))
    gray = rgb2gray(image)
    return exposure.equalize_hist(gray)
    def preproc(self, img, size, pixel_spacing, equalize=True, crop=True):
       """crop center and resize"""
        #    TODO: this is stupid, you could crop out the heart
        # But should test this
       if img.shape[0] < img.shape[1]:
           img = img.T
       # Standardize based on pixel spacing
       img = transform.resize(img, (int(img.shape[0]*(1.0/np.float32(pixel_spacing[0]))), int(img.shape[1]*(1.0/np.float32(pixel_spacing[1])))))
       # we crop image from center
       short_egde = min(img.shape[:2])
       yy = int((img.shape[0] - short_egde) / 2)
       xx = int((img.shape[1] - short_egde) / 2)
       if crop:
           crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
       # resize to 64, 64
           resized_img = transform.resize(crop_img, (size, size))
       else:
           resized_img = img
       #resized_img = gaussian_filter(resized_img, sigma=1)
       #resized_img = median_filter(resized_img, size=(3,3))
       if equalize:
           resized_img = equalize_hist(resized_img)
           resized_img = adjust_sigmoid(resized_img)
       resized_img *= 255.

       return resized_img.astype("float32")
Esempio n. 12
0
File: p2all.py Progetto: Yue93/PID
def alineacion(image,rgbCopia,escala):
    centerPoint=(140,165)    
    extents=15
    #if escala>1:
    #        extents=extents*escala
    cropImg=np.empty((extents*2,extents*2,3),dtype=float)   
    cropSizes=[]     
    cropSizes.append([0,0,0,0])
    cropImg[:,:,0]=cropImage(image[:,:,0],centerPoint,extents)
    for i in range(image.shape[2]-1):
        cropImg[:,:,i+1]=cropImage(image[:,:,i+1],centerPoint,extents*escala)[::escala,::escala]
        cropImg[:,:,i+1]=cropImg[:,:,i+1]-np.mean(cropImg[:,:,i+1])
    channelR=cropImg[:,:,0]
    for i in range(2):
        channelRGradient=np.gradient(channelR)
        cropGradient=np.gradient(cropImg[:,:,i+1])
        #correlation=correlationMatrix(channelR,cropImg[:,:,i+1])
        correlation=correlationMatrix(channelR,cropImg[:,:,i+1])        
        correlation=correlation-np.mean(correlation)
        print "Filtro size ",correlation.shape
        position=np.where(correlation==np.amax(correlation))
        despVector=[position[0][0]-correlation.shape[0]/2,position[1][0]-correlation.shape[1]/2]
        
        fila=despVector[0]
        columna=despVector[1]
        
        print "fila",fila
        print "columna", columna
        
        generateNewRGB(i,rgbCopia,fila,columna)
    
    rgbCopia=equalize_hist(rgbCopia)
    rgbCopia=rgbCopia*255/np.max(rgbCopia)
        
    return rgbCopia
Esempio n. 13
0
    def compute(self, src):
        image = img_as_ubyte(src)

        # denoise image
        denoised = denoise_tv_chambolle(image, weight=0.05)
        denoised_equalize= exposure.equalize_hist(denoised)

        # find continuous region (low gradient) --> markers
        markers = rank.gradient(denoised_equalize, disk(5)) < 10
        markers = ndi.label(markers)[0]

        # local gradient
        gradient = rank.gradient(denoised, disk(2))

        # labels
        labels = watershed(gradient, markers)

        # display results
        fig, axes = plt.subplots(2,3)
        axes[0, 0].imshow(image)#, cmap=plt.cm.spectral, interpolation='nearest')
        axes[0, 1].imshow(denoised, cmap=plt.cm.spectral, interpolation='nearest')
        axes[0, 2].imshow(markers, cmap=plt.cm.spectral, interpolation='nearest')
        axes[1, 0].imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest')
        axes[1, 1].imshow(labels, cmap=plt.cm.spectral, interpolation='nearest', alpha=.7)
        plt.show()
Esempio n. 14
0
def loadDataMontgomery(df, path, im_shape):
    """Function for loading Montgomery dataset"""
    X, y = [], []
    for i, item in df.iterrows():
        img = img_as_float(io.imread(path + item[0]))
        gt = io.imread(path + item[1])
        l, r = np.where(img.sum(0) > 1)[0][[0, -1]]
        t, b = np.where(img.sum(1) > 1)[0][[0, -1]]
        img = img[t:b, l:r]
        mask = gt[t:b, l:r]
        img = transform.resize(img, im_shape)
        img = exposure.equalize_hist(img)
        img = np.expand_dims(img, -1)
        mask = transform.resize(mask, im_shape)
        mask = np.expand_dims(mask, -1)
        X.append(img)
        y.append(mask)
    X = np.array(X)
    y = np.array(y)
    X -= X.mean()
    X /= X.std()

    print '### Data loaded'
    print '\t{}'.format(path)
    print '\t{}\t{}'.format(X.shape, y.shape)
    print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max())
    print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std())
    return X, y
Esempio n. 15
0
def visualize_depth_image(data):

    data[data == 0.0] = np.nan

    maxdepth = np.nanmax(data)
    mindepth = np.nanmin(data)
    data = data.copy()
    data -= mindepth
    data /= (maxdepth - mindepth)

    gray = np.zeros(list(data.shape) + [3], dtype=data.dtype)
    data = (1.0 - data)
    gray[..., :3] = np.dstack((data, data, data))

    # use a greenish color to visualize missing depth
    gray[np.isnan(data), :] = (97, 160, 123)
    gray[np.isnan(data), :] /= 255

    gray = exposure.equalize_hist(gray)

    # set alpha channel
    gray = np.dstack((gray, np.ones(data.shape[:2])))
    gray[np.isnan(data), -1] = 0.5

    return gray * 255
Esempio n. 16
0
def hsi_equalize_hist():
    image=data.astronaut()
    h=color.rgb2hsv(image)
    h[:,:,2]=exposure.equalize_hist(h[:,:,2])
    image_equal=color.hsv2rgb(h)
    io.imshow(image_equal)
    io.imsave('astronautequal.png',image_equal)
Esempio n. 17
0
def test_equalize_ubyte():
    with expected_warnings(['precision loss']):
        img = skimage.img_as_ubyte(test_img)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
    check_cdf_slope(cdf)
Esempio n. 18
0
    def histograms_of_stuff(cls, ref):
        # First we show the image, and its histogram
        neg = 1. - ref
        figs = []
        f1, axs1 = plt.subplots(2, 2, figsize=(8, 8))
        for i, im in enumerate(((ref, 'tire'), (neg, 'negative'))):
            axs1[i,0].imshow(im[0], cmap='gray')
            axs1[i,1].hist(im[0].ravel(), 256, range=(0., 1.), fc='k', ec='k')
            axs1[i,0].set_title(im[1])
            axs1[i,1].set_title(im[1] + ': histogram')

        figs.append(f1)

        # Some gamma correction ...
        gammas = (0.5, 1.3)
        f2, axs2 = plt.subplots(2, 2, figsize=(8,8))
        for i, gamma in enumerate(gammas):
            x = ref ** gamma
            axs2[i,0].imshow(x, cmap='gray')
            axs2[i,1].hist(x.ravel(), 256, range=(0.,1.), fc='k', ec='k')
            for z in axs2[i]:
                z.set_title('gamma = ' + str(gamma))
        figs.append(f2)

        # Histogram Equalization
        f3, axs3 = plt.subplots(1, 2, figsize=(8, 4))
        eq_ref = exposure.equalize_hist(ref)
        axs3[0].imshow(eq_ref, cmap='gray')
        axs3[1].hist(eq_ref.ravel(), 256, range=(0.,1.), fc='k', ec='k')
        for x in axs3:
            x.set_title('Histogram Equalization')
        figs.append(f3)
        return figs
Esempio n. 19
0
def _equalizeHistogram(img):
    '''
    histogram equalisation not bounded to int() or an image depth of 8 bit
    works also with negative numbers
    '''
    #to float if int:
    intType = None
    if 'f' not in img.dtype.str:
        TO_FLOAT_TYPES = {  np.dtype('uint8'):np.float16,
                    np.dtype('uint16'):np.float32,
                    np.dtype('uint32'):np.float64,
                    np.dtype('uint64'):np.float64} 

        intType = img.dtype
        img = img.astype(TO_FLOAT_TYPES[intType], copy=False)
    
    #get image deph
    DEPTH_TO_NBINS = {np.dtype('float16'):256, #uint8
                      np.dtype('float32'):32768, #uint16
                      np.dtype('float64'):2147483648} #uint32
    nBins = DEPTH_TO_NBINS[img.dtype]

    #scale to -1 to 1 due to skikit-image restrictions
    mn, mx = np.amin(img), np.amax(img)
    if abs(mn) > abs(mx):
        mx = mn
    img /= mx
    img = exposure.equalize_hist(img, nbins=nBins)
    
    img *= mx
    
    if intType:
        img = img.astype(intType)
    return img
Esempio n. 20
0
def extract_sift(image,lm=None, shape=[200,300], fix_points='outer',ttype='affine'):
    if lm==None:lm = landmarks(image)
    if np.any(np.isnan(lm)):
        return np.nan*np.ones([out_shape,out_shape,image.shape[2]]).astype(np.float16), np.nan*np.zeros_like(lm)
    dst = mean_face[:,p[fix_points]]
    dst = dst-dst.mean(1)[:,None]
    dst = dst/np.abs(dst).max()
    dst *=shape[0]/2
    dst +=shape[1]/2
    print(dst.min())
    print(dst.max())
    src = lm[:,p[fix_points]]
    tform = transform.estimate_transform(ttype, src.T,dst.T)
    lm_reg = tform(lm.T).T
    image = transform.warp(image,inverse_map=tform.inverse,output_shape=[shape[1],shape[1]])
    image = exposure.equalize_hist(image,mask=image!=0)
    S = 12
    for l1,l2 in lm_reg.T:
        x = np.arange(l2-S,l2+S)
        y = np.arange(l1-S,l1+S)
        for x_ in x:
            for y_ in y:
                image[x_,y_,0]=255


    return image, lm_reg
Esempio n. 21
0
def equalize(inputs):
    """equalize the data"""
    new_data = []
    for i in inputs:
        new_i = exposure.equalize_hist(i)
        new_data.append(new_i)
    return np.array(new_data)
def make_lungs():
    path = '/path/to/JSRT/All247images/'
    for i, filename in enumerate(os.listdir(path)):
        img = 1.0 - np.fromfile(path + filename, dtype='>u2').reshape((2048, 2048)) * 1. / 4096
        img = exposure.equalize_hist(img)
        io.imsave('/path/to/JSRT/new/' + filename[:-4] + '.png', img)
        print 'Lung', i, filename
Esempio n. 23
0
 def transform(self, Xb, yb):
     Xb, yb = super(EqualizeHistBatchIteratorMixin, self).transform(Xb, yb)
     Xb_transformed = np.asarray([
         [equalize_hist(img_ch) for img_ch in img] for img in Xb
     ])
     Xb_transformed = Xb_transformed.astype(Xb.dtype)
     return Xb_transformed, yb
Esempio n. 24
0
def classify_emotions(pca, clf, faces):
    emotions = []
    for scaled in faces:
        test_x = exposure.equalize_hist(scaled.reshape((1, -1)))
        face_pca = pca.transform(test_x)
        emotions.append(int(clf.predict(face_pca)[0]))
    return emotions
def add_auto_masks_area(areaFile,addMasks=False):
    from skimage.morphology import binary_dilation, binary_erosion, disk
    from skimage import exposure
    from skimage.transform import hough_circle
    from skimage.morphology import convex_hull_image
    from skimage.feature import canny
    from skimage.draw import circle_perimeter

    import h5py


    MASKs = np.zeros(areaFile.attrs['ROI_patches'].shape)
    if 'ROI_masks' in (areaFile.attrs.iterkeys()):
        print 'Masks have already been created'
        awns = raw_input('Would you like to redo them from scratch: (answer y/n): ')
    else:
        awns = 'y'

    if awns=='y':
        MASKs = np.zeros(areaFile.attrs['ROI_patches'].shape)
        for i in range(areaFile.attrs['ROI_patches'].shape[2]):
            patch = areaFile.attrs['ROI_patches'][:,:,i]
            
            tt0 = exposure.equalize_hist(patch)
            tt = 255*tt0/np.max(tt0)
            thresh = 1*tt>0.3*255
            thresh2 = 1*tt<0.1*255

            tt[thresh] = 255
            tt[thresh2] = 0



            edges = canny(tt, sigma=2, low_threshold=20, high_threshold=30)
            try_radii = np.arange(3,5)
            res = hough_circle(edges, try_radii)
            ridx, r, c = np.unravel_index(np.argmax(res), res.shape)
            
            r, c, try_radii[ridx]
            image = np.zeros([20,20,4])
            cx, cy = circle_perimeter(c, r, try_radii[ridx]+2)
            
            try:
                image[cy, cx] = (220, 80, 20, 1)
                original_image = np.copy(image[:,:,3])
                chull = convex_hull_image(original_image)
                image[chull,:] = (255, 0, 0, .4)
                
            except:
                pass
            
            
            MASKs[:,:,i] = (1*image[:,:,-1]>0)
        if addMasks:
            areaFile.attrs['ROI_masks'] = MASKs
    else:
        pass    

    return np.array(MASKs)
Esempio n. 26
0
def getImage():
    fn = r'/home/pi/tmp.jpg'
    proc = subprocess.Popen('raspistill -o %s -w 640 -h 480 -n -t 3' % (fn),
                            shell=True, stderr=subprocess.STDOUT)
    proc.wait()
    im = io.imread(fn, as_grey=True)
    im = exposure.equalize_hist(im)
    return skimage.img_as_ubyte(im)
Esempio n. 27
0
def post_process(img):
    """
    Post-processes the results using skimage filters
    """
    filt_1 = ski_filter.hprewitt(img)
    filt_2 = exposure.equalize_hist(filt_1)

    return filt_2
Esempio n. 28
0
def boost_contrast_global(image):
    """Returns a new image with contrast boosted globally.
    
    Args:
        image: assumed to be grayscale.
    """
    glob = exposure.equalize_hist(image) * 255
    return exposure.rescale_intensity(image)
Esempio n. 29
0
def visualize_derivatives(image):
    laplacian = scipy.ndimage.filters.laplace(image)
    lhist = mean_center(
        blur(exposure.equalize_hist(unitize(laplacian)),1))
    plt.imshow(lhist,
        origin='lower',interpolation='nearest',cmap='gray',extent=(0,64,)*2)
    plt.title('Laplacian')
    return gradient, laplacian
Esempio n. 30
0
 def preprocess(self, regions):
     # decoder expects input shape [samples, 1, 64, 64]
     crop = CropTransformation(translation=0, crop_shape=(64, 64))
     cropped_rois = crop(regions)
     if self.uses_hist_equalization:
         cropped_rois = np.stack([equalize_hist(roi) for roi in cropped_rois])
         cropped_rois = 2 * cropped_rois - 1
     return cropped_rois
Esempio n. 31
0
def histeq(I):
    return equalize_hist(I)
Esempio n. 32
0
def order_tracer(dir_name, file_name, X_half_width, step, min_height, aperture,
                 adaptive, view):
    poly_order = 2  # order of polynomial fit

    #read image
    hdulist = pyfits.open(dir_name.joinpath(file_name))
    ordim = hdulist[0].data.copy()
    hdulist.close()

    trace_im = np.zeros((ordim.shape[0], ordim.shape[1]), dtype=np.float)

    # Search for local maxima in the cross sections and construct the mask of orders. 1 - max, 0 - rest of pixels
    for x_t in range(X_half_width, ordim.shape[1] - X_half_width,
                     X_half_width):
        slic = np.median(ordim[:, x_t - X_half_width:x_t + X_half_width - 1],
                         1)
        peaks_coord, _ = find_peaks(slic, height=min_height, width=2)
        trace_im[peaks_coord, x_t] = 1

    # Now rearrange the data for the futher clustering
    ones = np.array(np.where(trace_im == 1))
    ord_mask = ones.T
    model = AgglomerativeClustering(n_clusters=None,
                                    affinity='euclidean',
                                    linkage='single',
                                    compute_full_tree=True,
                                    distance_threshold=5)
    model.fit(ord_mask)
    labels = model.labels_
    n_clusters = len(list(set(labels)))

    order_tab = []  # output table of traces
    width_tab = []  # output table of sizes
    center_x = ordim.shape[1] / 2 - 1
    for i in range(n_clusters):
        if len(ord_mask[labels == i,
                        1]) >= (ordim.shape[1] / X_half_width - 2) * 0.5:
            cheb_coef = chebfit(ord_mask[labels == i, 1],
                                ord_mask[labels == i, 0], poly_order)
            cheb_coef = np.insert(cheb_coef, 0, chebval(center_x, cheb_coef))
            order_tab.append(cheb_coef)
    order_tab = np.asarray(order_tab)  # convert list into array
    order_tab = order_tab[order_tab[:, 0].argsort()]  # Sort array by ascending
    order_tab[:, 0] = np.arange(
        len(order_tab[:, 0]),
        dtype=int)  # insert the number of order in the 0th column
    n_orders = int(order_tab[-1, 0]) + 1
    print(f"Found {n_orders} orders")
    logging.info(f"Found {n_orders} orders")

    # Recentering orders and the final tracing
    #get points for order tracing, start from center column of image
    n_points = np.floor((ordim.shape[1] / 2 - X_half_width) / step)
    print(f"{1+2*n_points} points in each order for fitting")
    logging.info(f"{1+2*n_points} points in each order for fitting")
    trace_x = np.arange(ordim.shape[1] // 2 - X_half_width - n_points * step,
                        ordim.shape[1] - step,
                        step,
                        dtype=int)

    x_coord = np.arange(ordim.shape[1])
    orders = []

    for i in range(n_orders):
        print(f"Re-trace order {i}")
        logging.info(f"Re-trace order {i}")
        xfit = []
        centr = []
        width = []
        for x in trace_x:
            xt = np.arange(x - step, x + step, 1, dtype=int)
            yc = chebval(x, order_tab[i, 1:])
            if yc > 0 and yc + X_half_width + 2 < ordim.shape[0]:
                yy = np.arange(yc - X_half_width,
                               yc + X_half_width + 2,
                               1,
                               dtype=int)
                prof = np.median(ordim[yy[0]:yy[-1] + 1, xt], axis=1)
                if prof.shape[0] != 0 and max(
                        prof
                ) > 20.:  # Fit only well-exposured part of the order
                    # Re-fit the cross-sections
                    moffat = lambda x, A, B, C, D, x0: A * (1 + (
                        (x - x0) / B)**2)**(-C) + D
                    Y = yy - yc
                    p0 = np.array([max(prof), 3.0, 3.0, 0.0, 3.0])
                    try:
                        popt, pcov = curve_fit(moffat,
                                               Y,
                                               prof,
                                               p0,
                                               maxfev=10000)
                    except RuntimeError:
                        pass
                    else:
                        fwhm = 2 * popt[1] * np.sqrt(2**(1 / (popt[2])) - 1)
                        if np.isfinite(fwhm) and fwhm > 1 and fwhm < 10:
                            xfit.append(x)
                            centr.append(popt[4] + yc)
                            width.append(fwhm)
                        med_fwhm = np.median(width)
                    # print(f"Order {i}, median FWHM: {med_fwhm:.2f}, mean FWHM: {np.mean(width):.2f}")
        print(f"Fit {len(xfit)} points, median FWHM {med_fwhm:.3f}")
        logging.info(f"Fit {len(xfit)} points, median FWHM {med_fwhm:.3f}")
        coef_center = chebfit(xfit, centr, poly_order)
        coef_width = chebfit(xfit, width, poly_order)
        ## Check the limits of the orders
        if adaptive:
            width = chebval(x_coord, coef_width)
        else:
            width = np.repeat(med_fwhm, ordim.shape[1])
        if np.min(chebval(x_coord, coef_center) -
                  width) < 1. or np.max(chebval(x_coord, coef_center) +
                                        width) >= ordim.shape[0] - 1:
            print(f"Skip incomplete order #{i}")
            logging.info(f"Skip incomplete order #{i}")
        else:
            width_tab.append(width)
            orders.append(coef_center)

    # Output data
    width_tab = np.asarray(width_tab)
    orders = np.asarray(orders)
    text_file = open(dir_name.joinpath('temp', 'traces.txt'),
                     "w")  # Save results
    for i in range(orders.shape[0]):
        text_file.write("Order" + '\t' + str(i) + '\n')
        for j in x_coord:
            text_file.write(
                format('%.2f' % chebval(j, orders[i, :])) + '\t' +
                format('%.2f' % width[j]) + '\n')
    text_file.close()
    print(f"Data saved to {dir_name.joinpath('temp/traces.txt')}")
    logging.info(f"Data saved to {dir_name.joinpath('temp/traces.txt')}")

    # Display the results
    fig = plt.figure(figsize=(15, 15 / (ordim.shape[1] / ordim.shape[0])),
                     tight_layout=True)
    ax0 = fig.add_subplot(1, 1, 1)
    ax0.imshow(equalize_hist(ordim), cmap='gist_gray')
    ax0.set_xlabel("CCD X")
    ax0.set_ylabel("CCD Y")
    for i in range(orders.shape[0]):
        ax0.plot(x_coord,
                 chebval(x_coord, orders[i, :]) + aperture * width_tab[i, :],
                 'b-',
                 lw=0.4)
        ax0.plot(x_coord,
                 chebval(x_coord, orders[i, :]) - aperture * width_tab[i, :],
                 'r-',
                 lw=0.4)
        ax0.text(x_coord[15],
                 chebval(x_coord[15], orders[i, :]),
                 i + 1,
                 color='k',
                 backgroundcolor='yellow',
                 fontsize=8)
    plt.gca().invert_yaxis()
    fig.savefig(dir_name.joinpath('orders_map.pdf'), dpi=350)
    if view:
        plt.show()

    return None
"""
Equalizing the histogram of an image
=====================================

Histogram equalizing makes images have a uniform histogram.
"""

from skimage import data, exposure
import matplotlib.pyplot as plt

camera = data.camera()
camera_equalized = exposure.equalize_hist(camera)

plt.figure(figsize=(7, 3))

plt.subplot(121)
plt.imshow(camera, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.subplot(122)
plt.imshow(camera_equalized, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.tight_layout()
plt.show()
Esempio n. 34
0
def plot_visualization(vid,
                       vid_orig,
                       vis_dir,
                       plot_img=False,
                       write_video=True):
    def crop_center(img, cropx, cropy):
        y, x, _ = img.shape
        startx = x // 2 - (cropx // 2)
        starty = y // 2 - (cropy // 2)
        return img[starty:starty + cropy, startx:startx + cropx, :]

    def plot_img_and_hist(image, axes, bins=256):
        #Plot an image along with its histogram and cumulative histogram.
        image = img_as_float(image)
        ax_img, ax_hist = axes
        ax_cdf = ax_hist.twinx()

        # Display image
        ax_img.imshow(image, cmap=plt.cm.gray)
        ax_img.set_axis_off()
        ax_img.set_adjustable('box-forced')

        # Display histogram
        ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black')
        ax_hist.ticklabel_format(axis='y',
                                 style='scientific',
                                 scilimits=(0, 0))
        ax_hist.set_xlabel('Pixel intensity')
        ax_hist.set_xlim(0, 1)
        ax_hist.set_yticks([])

        # Display cumulative distribution
        img_cdf, bins = exposure.cumulative_distribution(image, bins)
        ax_cdf.plot(bins, img_cdf, 'r')
        ax_cdf.set_yticks([])

        return ax_img, ax_hist, ax_cdf

    def PCA(data):
        m, n = data.shape[0], data.shape[1]
        #print(m, n)
        mean = np.mean(data, axis=0)
        data -= np.tile(mean, (m, 1))
        # calculate the covariance matrix
        cov = np.matmul(np.transpose(data), data)
        evals, evecs = np.linalg.eigh(cov)
        # sort eigenvalue in decreasing order
        idx = np.argsort(evals)[::-1]
        evecs = evecs[:, idx]
        evals = evals[idx]
        #print(evals)
        evecs = evecs[:, 0]
        return np.matmul(data, evecs), evals[0] / sum(evals)

    width, height = 112, 112

    video_histeq = []
    for i in range(vid.shape[0]):
        frame = crop_center(vid[i], 112, 112)
        frame = np.reshape(frame, (112 * 112, 3))
        frame, K = PCA(frame)
        frame = np.reshape(frame, (112, 112))
        max, min = np.max(frame), np.min(frame)
        frame = ((frame - min) / (max - min) * 255).astype('uint8')
        # Contrast stretching
        p2, p98 = np.percentile(frame, (2, 98))
        img_rescale = exposure.rescale_intensity(frame, in_range=(p2, p98))
        # Equalization
        img_eq = exposure.equalize_hist(frame)
        video_histeq.append(img_eq)

        # # Adaptive Equalization
        # img_adapteq = exposure.equalize_adapthist(frame, clip_limit=0.03)

        if plot_img:
            # Display results
            fig = plt.figure(figsize=(12, 16))
            axes = np.zeros((4, 3), dtype=np.object)
            axes[0, 0] = fig.add_subplot(4, 3, 1)
            for j in range(1, 3):
                axes[0, j] = fig.add_subplot(4,
                                             3,
                                             1 + j,
                                             sharex=axes[0, 0],
                                             sharey=axes[0, 0])
            for j in range(3, 12):
                axes[j // 3, j % 3] = fig.add_subplot(4, 3, 1 + j)

            ax_img, ax_hist, ax_cdf = plot_img_and_hist(frame, axes[0:2, 0])
            ax_img.set_title('PCA on 3 channels ({:.4f})'.format(K))

            y_min, y_max = ax_hist.get_ylim()
            ax_hist.set_ylabel('Number of pixels')
            ax_hist.set_yticks(np.linspace(0, y_max, 5))

            ax_img, ax_hist, ax_cdf = plot_img_and_hist(
                img_rescale, axes[0:2, 1])
            ax_img.set_title('Contrast stretching')

            ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[0:2, 2])
            ax_img.set_title('Histogram equalization')

            #ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_adapteq, axes[0:1, 3])
            #ax_img.set_title('Adaptive equalization')

            ax_cdf.set_ylabel('Fraction of total intensity')
            ax_cdf.set_yticks(np.linspace(0, 1, 5))

            print(vid_orig[j].shape)
            frame_downsample_crop = crop_center(vid_orig[j], 112, 112)
            frame = crop_center(vid[j], 112, 112)
            axes[2, 0].imshow(frame_downsample_crop.astype('uint8'))
            axes[2, 0].set_title('Dowmsampled')
            frame_scaled_joint = linear_scaling(
                frame, vid, video_linear_scaling=True,
                joint_channels=True).astype('uint8')
            axes[2, 1].imshow(frame_scaled_joint.astype('uint8'))
            axes[2, 1].set_title('Joint Scaling')
            frame_scaled_separate = linear_scaling(
                frame, vid, video_linear_scaling=True,
                joint_channels=False).astype('uint8')
            axes[2, 2].imshow(frame_scaled_separate.astype('uint8'))
            axes[2, 2].set_title('Separate Scaling')
            for j in range(frame.shape[2]):
                axes[3, j].imshow(frame[:, :, j], cmap=plt.get_cmap('jet'))
                axes[3, j].set_title('Channel{}'.format(j))
            # prevent overlap of y-axis labels
            fig.tight_layout()
            plt.savefig('{}/vis_{}.png'.format(vis_dir, i))
            plt.close()

    if write_video:
        fourcc = cv2.VideoWriter_fourcc(*'XVID')  # Be sure to use lower case
        output = "{}/hist_eq.avi".format(vis_dir)
        out = cv2.VideoWriter(output, fourcc, 10.0, (width, height), False)
        vid = np.multiply(np.asarray(video_histeq), 255).astype('uint8')
        print(vid.shape)
        print(output)
        for i in range(vid.shape[0]):
            frame = vid[i]
            #frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            #frame = frame.reshape(112, 112, 3)
            # print(frame)
            out.write(frame)
        out.release()
        cv2.destroyAllWindows()
Esempio n. 35
0
def equalize_histogram(img):
    return (equalize_hist(img) * 255)
Esempio n. 36
0
    def track_digits(self, old_candidates, new_frame, show_idx):
        # Prepare the new frame
        frame_o = img_as_float(new_frame)
        gray_o = rgb2grey(frame_o)
        gray = equalize_hist(gray_o)

        new_candidates = []

        i = 0
        roi_img = self.preprocess_roi(rescale(gray, 0.5))

        # Try to locate each candidate
        for c in old_candidates:
            # Extract the area where the candidate can now be
            i += 1
            h, w = c.image.shape
            if h < 10 or w < 10:
                new_candidates.append(c)
                c.lost_for += 1
                continue

            rx, ry, rw, rh = self.get_roi(
                c.rect, (new_frame.shape[1], new_frame.shape[0]))
            rx = int(rx / 2)
            ry = int(ry / 2)
            rw = int(rw / 2)
            rh = int(rh / 2)

            roi = roi_img[ry:ry + rh, rx:rx + rw]
            if min(roi.shape) <= 0:
                new_candidates.append(c)
                c.lost_for += 1
                continue

            if self.show_debug_images and i - 1 == show_idx:
                cv2.imshow('roi', img_as_ubyte(roi))

            # Get digit rects in roi
            rects = self.rotrects_from_image(
                roi, 2, True, frame_o.shape[0] * frame_o.shape[1])
            cands = []
            for rect in rects:
                transl_rect = ((rect[0][0] + 2 * rx, rect[0][1] + 2 * ry),
                               rect[1], rect[2])
                cands.append(transl_rect)

            if len(cands) == 0:
                # If there are no candidates we lost the digit
                c.lost_for += 1
                new_candidates.append(c)
            else:
                # If there are several candidates we need to choose the best one
                # Calculate metrics
                filt_cands = []
                for r in cands:
                    # Dimensions difference
                    dw = abs(max(r[1]) - max(c.dimensions))
                    dh = abs(min(r[1]) - min(c.dimensions))
                    ds = math.sqrt(dw * dw + dh * dh)

                    # Eucledian distance
                    dx = abs(r[0][0] - c.rect[0][0])
                    dy = abs(r[0][1] - c.rect[0][1])
                    dp = math.sqrt(dx * dx + dy * dy)

                    # Angular difference, unused
                    # da = abs(r[2] - c.rect[2])

                    # Filter based on heuristics
                    if ds < MAX_SIZE_DIFF_FACTOR * np.average(
                            c.dimensions) and dp < MAX_POS_DIFF:
                        filt_cands.append((r, dp))

                # If there are no candidates now we lost the digit
                best_score = -1
                if not filt_cands:
                    new_candidates.append(c)
                    c.lost_for += 1
                    continue

                # Try to find the best one
                max_dp = max([dp for _, dp in filt_cands]) + 1
                for r, dp in filt_cands:
                    cropped = self.crop_rotrect(r, gray_o)
                    if cropped is None or min(cropped.shape) <= 5:
                        continue

                    # Crop, calculate structural similarity
                    cropped = resize(cropped, (h, w))
                    ssim = compare_ssim(cropped, c.orig_image)

                    # Create an aggregated score
                    score = (1.0 - pow(dp / max_dp, POS_WEIGHT_ALPHA)) * ssim
                    if score > best_score:
                        best_score = score
                        best_rect = r
                        best_image = cropped

                # Choose the candidate with the best score if there is one
                if best_score < 0:
                    new_candidates.append(c)
                    c.lost_for += 1
                else:
                    cand = DigitCandidate(best_rect, best_image)
                    cand.dimensions = c.dimensions
                    cand.conf = c.conf
                    cand.guess = c.guess
                    new_candidates.append(cand)
        return new_candidates
Esempio n. 37
0
def equalize(image_array):
    image_equalized = ex.equalize_hist(image_array)
    return image_equalized
Esempio n. 38
0
# Fit CP tensor decomposition (two times).
rank = 10
repeats = 10
all_models = []
all_obj = []
for repeat in tqdm(range(repeats)):
    U = tt.cp_als(all_data_long, rank=rank, verbose=False)
    all_models.append(U)
    all_obj.append(U.obj)

U = all_models[np.argmin(all_obj)]

## We should be able to see differences in tastes by using distance matrices on trial factors
trial_factors = U.factors.factors[-1]
trial_distances = dist_mat(trial_factors, trial_factors)
plt.figure()
plt.imshow(exposure.equalize_hist(trial_distances))

# pca on trial factors and plot by taste
trial_labels = np.sort([0, 1, 2, 3, 4, 5] * 32)
reduced_trials_pca = pca(n_components=2).fit_transform(trial_factors)
plt.scatter(reduced_trials_pca[:, 0], reduced_trials_pca[:, 1], c=trial_labels)

# tsne on trial factors and plot by taste
X_embedded = tsne(n_components=2, perplexity=40).fit_transform(trial_factors)
plt.figure()
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=trial_labels)

# Compare the low-dimensional factors from the two fits.
fig, _, _ = tt.plot_factors(U.factors)
Esempio n. 39
0
    def cache(self, path):
        As = [
            os.path.join(path, p) for p in os.listdir(path)
            if p.startswith('A') and p.endswith(self.ext)
        ]
        Bs = [
            os.path.join(path, p) for p in os.listdir(path)
            if p.startswith('B') and p.endswith(self.ext)
        ]
        LRs = [
            os.path.join(path, p) for p in os.listdir(path)
            if p.startswith('LR') and p.endswith(self.ext)
        ]
        if os.path.exists(os.path.join('mask_A' + self.ext)):
            m = np.array(Image.open(os.path.join('mask_A' + self.ext)))
            m = np.expand_dims(m, axis=2) if m.ndim == 2 else m
            maskA = m < m.max() / 2
        else:
            maskA = None
        if os.path.exists(os.path.join('mask_B' + self.ext)):
            m = np.array(Image.open(os.path.join('mask_B' + self.ext)))
            m = np.expand_dims(m, axis=2) if m.ndim == 2 else m
            maskB = m < m.max() / 2
        else:
            maskB = None
        ImgAs, PathAs, ImgBs, PathBs, ImgLRs, PathLRs = [], [], [], [], [], []
        for p in As:
            try:
                img = np.array(Image.open(p))
                img = np.expand_dims(img, axis=2) if img.ndim == 2 else img
                if maskA:
                    img[maskA] = img.min()
                ImgAs.append(img)
                PathAs.append(p)
            except KeyboardInterrupt:
                raise
            except Exception as e:
                print('error when reading file ', p)
        assert len(ImgAs) > 0, 'no file found for "A"'
        for p in Bs:
            try:
                img = np.array(Image.open(p))
                img = np.expand_dims(img, axis=2) if img.ndim == 2 else img
                if maskB:
                    img[maskB] = img.min()
                ImgBs.append(img)
                PathBs.append(p)
            except KeyboardInterrupt:
                raise
            except Exception as e:
                print('error when reading file ', p)

        for p in LRs:
            try:
                img = np.array(Image.open(p))
                assert img.ndim == 2
                if self.drift_correction:
                    import imreg_dft as ird
                    from skimage import exposure
                    b = ImgBs[0][:, :, 0]
                    b = exposure.equalize_hist(b)
                    b = scipy.ndimage.filters.gaussian_filter(b, sigma=(6, 6))
                    b = scipy.misc.imresize(b, img.shape[:2])
                    ts = ird.translation(b, img)
                    tvec = ts["tvec"].round(4)
                    # the Transformed IMaGe.
                    img = ird.transform_img(img, tvec=tvec)
                img = scipy.misc.imresize(img, ImgBs[0].shape[:2])
                img = np.expand_dims(img, axis=2)
                ImgLRs.append(img)
                PathLRs.append(p)
            except KeyboardInterrupt:
                raise
            except Exception as e:
                print('error when reading file ', p)
                import traceback, sys
                traceback.print_exc(file=sys.stdout)

        self.__cache[path] = {
            'A': ImgAs,
            'B': ImgBs,
            'LR': ImgLRs,
            'path': path,
            'pathA': PathAs,
            'pathB': PathBs,
            'pathLR': PathLRs
        }
        return True
from matplotlib import pyplot as plt
import cv2
import numpy as np
from skimage import exposure

image = cv2.imread("../fig/Fig1.jpg")
# image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plt.figure()
plt.title("Original Image")
plt.imshow(image)

# Histogram
hist1 = np.histogram(image, bins=2)  # Calculate histogram with numpy
hist2 = exposure.histogram(image, nbins=2)  # Calculate histogram with skimage
plt.figure("Grayscale Histogram")
arr = image.flatten()
n, bins, patches = plt.hist(arr,
                            bins=256,
                            normed=1,
                            facecolor='black',
                            edgecolor='black')

# Histogram Equalization
img1 = exposure.equalize_hist(image)
arr1 = img1.flatten()
plt.figure("Image after Histogram Equalization")
plt.imshow(img1, plt.cm.gray)  # Image after Histogram Equalization
plt.figure("Histogram Equalization")
plt.hist(arr1, bins=256, normed=1, edgecolor='None', facecolor='red')
plt.show()
Esempio n. 41
0
def get_section_stats(bd, section_rows, section_cols, parameter_object,
                      section_counter):
    """
    Split section into chunks and process features at each scale
    
    Args:
        bd (ndarray): The section array.
        section_rows (int)
        section_cols (int)
        parameter_object (class object)        
    
    Returns:
        List of computed features for each scale, for each statistic.
    """

    if parameter_object.trigger in ['pantex', 'lac']:
        out_d_range = (0, 31)
    else:
        out_d_range = (0, 255)

    # Scale the data to an 8-bit range.
    if (bd.dtype != 'uint8') and (parameter_object.trigger
                                  not in parameter_object.spectral_indices):

        bd = np.uint8(
            rescale_intensity(bd,
                              in_range=(parameter_object.image_min,
                                        parameter_object.image_max),
                              out_range=out_d_range))

    # Apply histogram equalization.
    if parameter_object.trigger != 'dmp':

        if parameter_object.equalize:
            bd = equalize_hist(bd, nbins=256)

        elif parameter_object.equalize_adapt:

            bd = equalize_adapthist(bd,
                                    kernel_size=(int(section_rows / 128),
                                                 int(section_cols / 128)),
                                    clip_limit=.05,
                                    nbins=256)

        if parameter_object.equalize or parameter_object.equalize_adapt:

            bd = np.uint8(
                rescale_intensity(bd, in_range=(0., 1.), out_range=(0, 255)))

        # Remove image noise.
        if parameter_object.smooth > 0:
            bd = np.uint8(
                cv2.bilateralFilter(bd, parameter_object.smooth, .1, .1))

    # elif parameter_object.trigger == 'lbp':
    #
    #     if parameter_object.visualize:
    #         bdOrig = bd.copy()
    #
    # elif parameter_object.trigger == 'hough':
    #
    #     # for display (testing) purposes only
    #     if parameter_object.visualize:
    #         bdOrig = bd.copy()
    #
    # # test canny and hough lines
    # if parameter_object.visualize:
    #
    #     # for display purposes only
    #     bdOrig = bd.copy()
    #
    #     test_plot(bd, bdOrig, parameter_object.trigger, parameter_object)

    # Get the row and column section chunk indices.
    # chunk_indices = get_chunk_indices(section_rows,
    #                                   section_cols,
    #                                   parameter_object.block,
    #                                   parameter_object.chunk_size,
    #                                   parameter_object.scales[-1])

    func_dict = dict(
        dmp=dict(name='Differential Morphological Profiles', args=dict()),
        evi2=dict(name='Two-band Enhanced Vegetation Index', args=dict()),
        fourier=dict(name='Fourier transfrom', args=dict()),
        gabor=dict(name='Gabor filters', args=dict()),
        gndvi=dict(name='Green Normalized Difference Vegetation Index',
                   args=dict()),
        grad=dict(name='Gradient magnitude', args=dict()),
        hog=dict(name='Histogram of Oriented Gradients', args=dict()),
        lac=dict(name='Lacunarity', args=dict(lac_r=parameter_object.lac_r)),
        lbp=dict(name='Local Binary Patterns', args=dict()),
        lbpm=dict(name='Local Binary Patterns moments', args=dict()),
        lsr=dict(name='Line support regions', args=dict()),
        mean=dict(name='Mean', args=dict()),
        ndvi=dict(name='Normalized Difference Vegetation Index', args=dict()),
        pantex=dict(name='PanTex', args=dict(weight=parameter_object.weight)),
        orb=dict(name='Oriented FAST and Rotated BRIEF key points',
                 args=dict()),
        saliency=dict(name='Image saliency', args=dict()),
        seg=dict(name='Segmentation', args=dict()),
        sfs=dict(name='Structural Feature Sets',
                 args=dict(sfs_threshold=parameter_object.sfs_threshold,
                           sfs_skip=parameter_object.sfs_skip)))

    for idx in parameter_object.spectral_indices:
        if idx not in func_dict:
            func_dict[idx] = {'name': idx, 'args': {}}

    logger.info('  Processing {} for section {:,d} of {:,d} ...'.format(
        func_dict[parameter_object.trigger]['name'], section_counter,
        parameter_object.n_sects))

    other_args = func_dict[parameter_object.trigger]['args']

    if parameter_object.trigger in parameter_object.spectral_indices:
        trigger = 'mean'
    else:
        trigger = parameter_object.trigger

    return call_func(bd, parameter_object.block, parameter_object.scales,
                     parameter_object.scales[-1], trigger, **other_args)
Esempio n. 42
0
def test_equalize_float():
    img = skimage.img_as_float(test_img)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
    check_cdf_slope(cdf)
Esempio n. 43
0
def test_equalize_uint8_approx():
    """Check integer bins used for uint8 images."""
    img_eq0 = exposure.equalize_hist(test_img_int)
    img_eq1 = exposure.equalize_hist(test_img_int, nbins=3)
    np.testing.assert_allclose(img_eq0, img_eq1)
Esempio n. 44
0
    img_cdf, bins = exposure.cumulative_distribution(img, bins)
    ax_cdf.plot(bins, img_cdf, 'r')
    ax_cdf.set_yticks([])

    return ax_img, ax_hist, ax_cdf


# Load an example image
img = data.moon()

# Contrast stretching
p2, p98 = np.percentile(img, (2, 98))
img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98))

# Equalization
img_eq = exposure.equalize_hist(img)

# Adaptive Equalization
img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03)

# Display results
fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(8, 5))

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0])
ax_img.set_title('Low contrast image')

y_min, y_max = ax_hist.get_ylim()
ax_hist.set_ylabel('Number of pixels')
ax_hist.set_yticks(np.linspace(0, y_max, 5))

ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[:, 1])
Esempio n. 45
0
from tabulate import tabulate
import matplotlib.pyplot as plt
import time
from pylab import savefig

text = '----------REPORT----------'

#######################################################################################################################
#                                                      Import data                                                    #
#######################################################################################################################

print '--Importing data \n'

data = pickle.load(open("data/groundTruth.pkl", "rb"))
img = data['image']
img = exposure.equalize_hist(img)
mask = data['mask']

#######################################################################################################################
#                                            Building training and test sets                                          #
#######################################################################################################################

print '--Building sets \n'

h, w = img.shape
test_size = 0.85
text += '\n\n---Parameters--'
text += '\n-test_size = %s' % (test_size)

img_train = img[:, :w * (1 - test_size)]
mask_train = mask[:, :w * (1 - test_size)]
Esempio n. 46
0
# 25 XP
# Import the required Scikit-image module for contrast.

# Instructions 2/4
# 25 XP
# Show the histogram from the original x-ray image chest_xray_image, using the hist() function.

# Instructions 3/4
# 25 XP
# Use histogram equalization on chest_xray_image to obtain the improved image and load it as xray_image_eq.

# Instructions 4/4
# 25 XP
# Show the resulting improved image xray_image_eq.

# Import the required module (Instruction 1)
from skimage import exposure

# Show original x-ray image and its histogram (Instruction 2)
show_image(chest_xray_image, 'Original x-ray')

plt.title('Histogram of image')
plt.hist(chest_xray_image.ravel(), bins=256)
plt.show()

# Use histogram equalization to improve the contrast (Instruction 3)
xray_image_eq = exposure.equalize_hist(chest_xray_image)

# Show the resulting image (Instruction 4)
show_image(xray_image_eq, 'Resulting image')
Esempio n. 47
0
def dicom_to_array(img_rows, img_cols):


    TrainData_dict = scipy.io.loadmat('../data/train.mat')
    TrainMask_dict = scipy.io.loadmat('../data/trainseg.mat')
    ValidateData_dict = scipy.io.loadmat('../data/validate.mat')
    ValidateMask_dict = scipy.io.loadmat('../data/validateseg.mat')
    TestData_dict = scipy.io.loadmat('../data/test.mat')
    TestMask_dict = scipy.io.loadmat('../data/testseg.mat')

    TrainData = TrainData_dict['image_all']
    TrainMask = TrainMask_dict['seg_all']
    ValidateData = ValidateData_dict['image_all']
    ValidateMask = ValidateMask_dict['seg_all']
    TestData = TestData_dict['image_all']
    TestMask = TestMask_dict['seg_all']


    d1 = TrainData.shape[0]
    d2 = ValidateData.shape[0]   
    d3 = TestData.shape[0]

    imgs1 = np.zeros( [d1, img_rows, img_cols])
    imgs1_seg = np.zeros( [d1, img_rows, img_cols])
    imgs2 = np.zeros( [d2, img_rows, img_cols])
    imgs2_seg = np.zeros( [d2, img_rows, img_cols])
    imgs3 = np.zeros( [d3, img_rows, img_cols])
    imgs3_seg = np.zeros( [d3, img_rows, img_cols])


    for kk in range(0,d1):  #for train
        img = TrainData[kk,:,:]
        TrainData[kk,:,:] = equalize_hist( img.astype(int) )
        imgs1[kk,:,:] = resize( TrainData[kk,:,:], (img_rows, img_cols), preserve_range=True)
        imgs1_seg[kk,:,:] = resize( TrainMask[kk,:,:], (img_rows, img_cols), preserve_range=True)

    for kk in range(0,d2):  #for validate
        img = ValidateData[kk,:,:]
        ValidateData[kk,:,:] = equalize_hist( img.astype(int) )
        imgs2[kk,:,:] = resize( ValidateData[kk,:,:], (img_rows, img_cols), preserve_range=True)
        imgs2_seg[kk,:,:] = resize( ValidateMask[kk,:,:], (img_rows, img_cols), preserve_range=True)

    for kk in range(0,d3):  #for test
        img = TestData[kk,:,:]
        TestData[kk,:,:] = equalize_hist( img.astype(int) )
        imgs3[kk,:,:] = resize( TestData[kk,:,:], (img_rows, img_cols), preserve_range=True)
        imgs3_seg[kk,:,:] = resize( TestMask[kk,:,:], (img_rows, img_cols), preserve_range=True)


    TrainData = np.concatenate(imgs1, axis=0).reshape(-1, img_rows, img_cols, 1)
    TrainMask = np.concatenate(imgs1_seg, axis=0).reshape(-1, img_rows, img_cols, 1)
    ValidateData = np.concatenate(imgs2, axis=0).reshape(-1, img_rows, img_cols, 1)
    ValidateMask = np.concatenate(imgs2_seg, axis=0).reshape(-1, img_rows, img_cols, 1)
    TestData = np.concatenate(imgs3, axis=0).reshape(-1, img_rows, img_cols, 1)
    TestMask = np.concatenate(imgs3_seg, axis=0).reshape(-1, img_rows, img_cols, 1)

    np.save('../data/train.npy', TrainData)
    np.save('../data/train_masks.npy', TrainMask)
    np.save('../data/validate.npy', ValidateData)
    np.save('../data/validate_masks.npy', ValidateMask)
    np.save('../data/test.npy', TestData)
    np.save('../data/test_masks.npy', TestMask)
Esempio n. 48
0
def test_equalize_ubyte():
    img = util.img_as_ubyte(test_img)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
    check_cdf_slope(cdf)
Esempio n. 49
0
inverse_thresh = np.invert(thresh_planes)

fig = plt.figure(figsize=(6, 6))
plt.imshow(inverse_thresh, "gray")
plt.show()


# %%

# Contrast stretching
p2 = np.percentile(image, 2)
p98 = np.percentile(image, 98)
image_ct = exposure.rescale_intensity(image, in_range=(p2, p98))

# Histogram Equalization
image_eq = exposure.equalize_hist(image)

# Show the images
fig = plt.figure(figsize=(20, 12))

# Subplot for original image
a = fig.add_subplot(3, 3, 1)
imgplot = plt.imshow(image)
a.set_title('Original')

# Subplot for contrast stretched image
a = fig.add_subplot(3, 3, 2)
imgplot = plt.imshow(image_ct)
a.set_title('Contrast Stretched')

# Subplot for equalized image
Esempio n. 50
0
from matplotlib import pyplot as plt
from skimage import exposure
from utils import show_image, show_histogram

chest_xray_img = plt.imread('images/chest_xray.png')

show_image(chest_xray_img, "Chest x-ray")
show_histogram(chest_xray_img.ravel())

chest_xray_img_eq = exposure.equalize_hist(chest_xray_img)
show_image(chest_xray_img_eq, 'Resulting image')
Esempio n. 51
0
show_plane(c, gamma_high[32], title=f'Gamma = {gamma_high_val}')

plot_hist(d, data)
plot_hist(e, gamma_low)
plot_hist(f, gamma_high)
# sphinx_gallery_thumbnail_number = 4

#####################################################################
# `Histogram
# equalization <https://en.wikipedia.org/wiki/Histogram_equalization>`_
# improves contrast in an image by redistributing pixel intensities. The most
# common pixel intensities get spread out, increasing contrast in low-contrast
# areas. One downside of this approach is that it may enhance background
# noise.

equalized_data = exposure.equalize_hist(data)

display(equalized_data)

#####################################################################
# As before, if we have a Jupyter kernel running, we can explore the above
# slices interactively.

explore_slices(equalized_data)

#####################################################################
# Let us now plot the image histogram before and after histogram equalization.
# Below, we plot the respective cumulative distribution functions (CDF).

_, ((a, b), (c, d)) = plt.subplots(nrows=2, ncols=2, figsize=(16, 8))
Esempio n. 52
0
def plot_visualization_frame(eval_vis_dir, frame, name):
    def crop_center(img, cropx, cropy):
        y, x, _ = img.shape
        startx = x // 2 - (cropx // 2)
        starty = y // 2 - (cropy // 2)
        return img[starty:starty + cropy, startx:startx + cropx, :]

    def plot_img_and_hist(image, axes, bins=256):
        #Plot an image along with its histogram and cumulative histogram.
        image = img_as_float(image)
        ax_img, ax_hist = axes
        ax_cdf = ax_hist.twinx()

        # Display image
        ax_img.imshow(image, cmap=plt.cm.gray)
        ax_img.set_axis_off()
        ax_img.set_adjustable('box-forced')

        # Display histogram
        ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black')
        ax_hist.ticklabel_format(axis='y',
                                 style='scientific',
                                 scilimits=(0, 0))
        ax_hist.set_xlabel('Pixel intensity')
        ax_hist.set_xlim(0, 1)
        ax_hist.set_yticks([])

        # Display cumulative distribution
        img_cdf, bins = exposure.cumulative_distribution(image, bins)
        ax_cdf.plot(bins, img_cdf, 'r')
        ax_cdf.set_yticks([])

        return ax_img, ax_hist, ax_cdf

    frame = crop_center(frame, 112, 112)
    frame = frame[:, :, 0]
    max, min = np.max(frame), np.min(frame)
    frame = ((frame - min) / (max - min) * 255).astype('uint8')
    # Contrast stretching
    p2, p98 = np.percentile(frame, (2, 98))
    img_rescale = exposure.rescale_intensity(frame, in_range=(p2, p98))
    # Equalization
    img_eq = exposure.equalize_hist(frame)

    # Display results
    fig = plt.figure(figsize=(12, 8))
    axes = np.zeros((2, 3), dtype=np.object)
    axes[0, 0] = fig.add_subplot(2, 3, 1)
    for i in range(1, 3):
        axes[0, i] = fig.add_subplot(2,
                                     3,
                                     1 + i,
                                     sharex=axes[0, 0],
                                     sharey=axes[0, 0])
    for i in range(3, 6):
        axes[i // 3, i % 3] = fig.add_subplot(2, 3, 1 + i)

    ax_img, ax_hist, ax_cdf = plot_img_and_hist(frame, axes[0:2, 0])
    ax_img.set_title('Feature map')

    y_min, y_max = ax_hist.get_ylim()
    ax_hist.set_ylabel('Number of pixels')
    ax_hist.set_yticks(np.linspace(0, y_max, 5))

    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[0:2, 1])
    ax_img.set_title('Contrast stretching')

    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[0:2, 2])
    ax_img.set_title('Histogram equalization')

    ax_cdf.set_ylabel('Fraction of total intensity')
    ax_cdf.set_yticks(np.linspace(0, 1, 5))

    fig.tight_layout()

    plt.savefig(os.path.join(eval_vis_dir, '{}.png'.format(name)))
    plt.close()
Esempio n. 53
0
def tile_alt_imshow(img_arrays,
                    heat_maps=None,
                    labels=None,
                    titles=None,
                    label_choice=1,
                    width=30,
                    height=30,
                    save_it=None,
                    h_slot=None,
                    w_slot=None,
                    CAM=None,
                    cmap='seismic',
                    alpha=0.3,
                    vmin=None,
                    vmax=None,
                    colorbar=False,
                    prob_array=None,
                    force_single_channel=False):

    plot_heat_map = None

    #scaled_img_arrays = rescale_img(img_arrays)
    scaled_img_arrays = img_arrays

    if len(img_arrays.shape) == 4:
        img_n, img_h, img_w, _ = img_arrays.shape
    else:
        img_n, img_h, img_w = img_arrays.shape

    if h_slot is None:
        h_slot = int(math.ceil(np.sqrt(img_n)))
    if w_slot is None:
        w_slot = int(math.ceil(np.sqrt(img_n)))

    fig, axes = plt.subplots(h_slot, w_slot, figsize=(width, height))
    fig.subplots_adjust(hspace=0.1, wspace=0)

    for ax, i in zip(axes.flatten(), range(img_n)):
        #img = rescale_img(scaled_img_arrays[i])
        img = scaled_img_arrays[i]
        #p2, p98 = np.percentile(img, (2, 98))
        #img = exposure.rescale_intensity(img, in_range=(p2, p98))
        img = exposure.equalize_hist(img)

        if labels is not None:
            c_labels = resize_label_array(labels[i], (img_h, img_w))
            img *= np.expand_dims(c_labels[..., label_choice], axis=2)

        if force_single_channel:
            cxr = ax.imshow(img[..., 0], cmap='gray')
        else:
            cxr = ax.imshow(img, 'gray')

        if prob_array is not None:
            c_prob = prob_array[i].round(2)
            c_text = 'Pelvis: {0:.2f}\nHip: {1:.2f}\nFail: {2:.2f}\nCXR: {3:.2f}'.format(
                c_prob[0], c_prob[1], c_prob[2], c_prob[3])
            ax.text(10, 30, c_text, bbox={'facecolor': 'white', 'pad': 2})

        if heat_maps is not None:
            resized_map = transform.resize(heat_maps[i], (224, 224),
                                           mode='reflect',
                                           anti_aliasing=True)
            plot_heat_map = ax.imshow(resized_map,
                                      cmap=cmap,
                                      alpha=alpha,
                                      vmin=vmin,
                                      vmax=vmax)

        if CAM is not None:
            resized_map = transform.resize(CAM[i], (224, 224),
                                           mode='reflect',
                                           anti_aliasing=True)
            resized_map = rescale_img(resized_map)

            plot_heat_map = ax.imshow(resized_map,
                                      cmap=cmap,
                                      alpha=alpha,
                                      vmin=vmin,
                                      vmax=vmax)

        if titles is not None:
            ax.set_title(titles[i], color='red')

        ax.axis('off')

    if colorbar:
        fig.colorbar(plot_heat_map)

    if save_it is not None:
        plt.savefig(save_it, dpi=300, format='png')
    else:
        plt.show()
Esempio n. 54
0
def order_location_plot(outpath, obj_base_name, flat_base_name, flat_img,
                        obj_img, orders):

    pl.figure('orders', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order location and identification', fontsize=14)
    pl.set_cmap('Blues_r')
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj_img))
    except BaseException:
        obj_plot.imshow(obj_img)
    obj_plot.set_title('object ' + obj_base_name)
    obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    flat_plot = pl.subplot(1, 2, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat_img))
    except BaseException:
        flat_plot.imshow(flat_img)
    flat_plot.set_title('flat ' + flat_base_name)
    flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])

    for order in orders:
        obj_plot.plot(np.arange(1024),
                      order.flatOrder.topEdgeTrace,
                      'k-',
                      linewidth=1.0)
        obj_plot.plot(np.arange(1024),
                      order.flatOrder.botEdgeTrace,
                      'k-',
                      linewidth=1.0)
        obj_plot.plot(np.arange(1024),
                      order.flatOrder.smoothedSpatialTrace,
                      'y-',
                      linewidth=1.0)
        obj_plot.text(10,
                      order.flatOrder.topEdgeTrace[0] - 10,
                      str(order.flatOrder.orderNum),
                      fontsize=10)

        flat_plot.plot(np.arange(1024),
                       order.flatOrder.topEdgeTrace,
                       'k-',
                       linewidth=1.0)
        flat_plot.plot(np.arange(1024),
                       order.flatOrder.botEdgeTrace,
                       'k-',
                       linewidth=1.0)
        flat_plot.plot(np.arange(1024),
                       order.flatOrder.smoothedSpatialTrace,
                       'y-',
                       linewidth=1.0)
        flat_plot.text(10,
                       order.flatOrder.topEdgeTrace[0] - 10,
                       str(order.flatOrder.orderNum),
                       fontsize=10)

    pl.tight_layout()
    pl.savefig(constructFileName(outpath, obj_base_name, None, 'traces.png'))
    pl.close()
def hist_equalize(img):
    return exposure.equalize_hist(img)
Esempio n. 56
0
 def time_equalize_hist(self):
     # Run 10x to average out performance
     # note that this is not needed as asv does this kind of averaging by
     # default, but this loop remains here to maintain benchmark continuity
     for i in range(10):
         result = exposure.equalize_hist(self.image)
Esempio n. 57
0
    xmin, xmax = dtype_range[image.dtype.type]
    ax_hist.set_xlim(xmin, xmax)

    # Display cumulative distribution
    img_cdf, bins = exposure.cumulative_distribution(image, bins)
    ax_cdf.plot(bins, img_cdf, 'r')

    return ax_img, ax_hist, ax_cdf


# Load an example image
img = img_as_ubyte(data.moon())

# Global equalize
img_rescale = exposure.equalize_hist(img)

# Equalization
selem = disk(30)
img_eq = rank.equalize(img, selem=selem)

# Display results
fig = plt.figure(figsize=(8, 5))
axes = np.zeros((2, 3), dtype=np.object)
axes[0, 0] = plt.subplot(2, 3, 1)
axes[0, 1] = plt.subplot(2, 3, 2, sharex=axes[0, 0], sharey=axes[0, 0])
axes[0, 2] = plt.subplot(2, 3, 3, sharex=axes[0, 0], sharey=axes[0, 0])
axes[1, 0] = plt.subplot(2, 3, 4)
axes[1, 1] = plt.subplot(2, 3, 5)
axes[1, 2] = plt.subplot(2, 3, 6)
Esempio n. 58
0
# We compare here how the global histogram equalization is applied locally.
#
# The equalized image [2]_ has a roughly linear cumulative distribution
# function for each pixel neighborhood. The local version [3]_ of the
# histogram equalization emphasizes every local gray-level variations.
#
# .. [2] http://en.wikipedia.org/wiki/Histogram_equalization
# .. [3] http://en.wikipedia.org/wiki/Adaptive_histogram_equalization

from skimage import exposure
from skimage.filters import rank

noisy_image = img_as_ubyte(data.camera())

# equalize globally and locally
glob = exposure.equalize_hist(noisy_image) * 255
loc = rank.equalize(noisy_image, disk(20))

# extract histogram for each image
hist = np.histogram(noisy_image, bins=np.arange(0, 256))
glob_hist = np.histogram(glob, bins=np.arange(0, 256))
loc_hist = np.histogram(loc, bins=np.arange(0, 256))

fig, axes = plt.subplots(3, 2, figsize=(10, 10))
ax = axes.ravel()

ax[0].imshow(noisy_image, interpolation='nearest', cmap=plt.cm.gray)
ax[0].axis('off')

ax[1].plot(hist[1][:-1], hist[0], lw=2)
ax[1].set_title('Histogram of gray values')
Esempio n. 59
0
    def __getitem__(self, idx):
        self.clone = False
        self.orig_noise = False
        self.binary_orig = False
        self.binary_mask = False
        self.binary_ones_pow = False
        self.binary_orig_pow = False

        file_name = self.file_names[idx]

        if self.working_dir is not None:
            file = os.path.join(self.working_dir, file_name)
        else:
            file = file_name

        sample, _ = self.t_spectrogram(file)
        sample_spec = sample.clone()

        # Data augmentation
        if self.augmentation:
            sample_spec = self.t_amplitude(sample_spec)
            sample_spec = self.t_pitchshift(sample_spec)
            sample_spec = self.t_timestretch(sample_spec)

        sample_orca_detect = sample_spec.clone()
        sample_orca_detect = self.t_compr_a(sample_orca_detect)
        sample_orca_detect = self.t_norm(sample_orca_detect)

        sample_spec = self.sp.detect_strong_spectral_region(sample_orca_detect, sample_spec).unsqueeze(dim=0)

        sample_spec_ncmpr = sample_spec.clone()

        sample_spec = self.t_compr_f(sample_spec)

        # input not compressed, but 0/1 normalized for binary cases
        binary_input_not_cmpr_not_norm = sample_spec_ncmpr.clone()
        binary_input = self.t_compr_a(binary_input_not_cmpr_not_norm)
        binary_input = self.t_norm(binary_input)

        # frequency compressed, to amplitude and normalized ground truth
        ground_truth = sample_spec.clone()
        ground_truth = self.t_compr_a(ground_truth)
        ground_truth = self.t_norm(ground_truth)

        # ARTF PART
        distribution_idx = random.randint(0, 9)

        if distribution_idx != 4:
            sample_spec = self.t_compr_a(sample_spec)

        if distribution_idx == 0:
            if self.random:
                gaus_stdv = float(random.randint(0, 25))
            else:
                gaus_stdv = self.gaus_stdv
            distribution = torch.distributions.normal.Normal(torch.tensor(self.gaus_mean),
                                                             torch.tensor(gaus_stdv)).sample(
                sample_shape=torch.Size([128, 256])).squeeze(dim=-1)
        elif distribution_idx == 1:
            if self.random:
                df = float(random.randint(0, 30))
            else:
                df = self.df
            distribution = torch.distributions.chi2.Chi2(torch.tensor(df)).sample(
                sample_shape=torch.Size([128, 256])).squeeze(dim=-1)
        elif distribution_idx == 2:
            if self.random:
                p_lambda = float(random.randint(0, 30))
            else:
                p_lambda = self.poisson_lambda
            distribution = torch.distributions.poisson.Poisson(torch.tensor(p_lambda)).sample(
                sample_shape=torch.Size([128, 256])).squeeze(dim=-1)
        elif distribution_idx == 3:
            if self.random:
                e = round(random.uniform(0.05, 0.15), 2)
            else:
                e = self.exp_e
            distribution = torch.distributions.exponential.Exponential(torch.tensor(e)).sample(
                sample_shape=torch.Size([128, 256])).squeeze(dim=-1)
        elif distribution_idx == 4:
            if not self.random:
                self.t_addnoise.min_snr = self.orig_noise_value
                self.t_addnoise.max_snr = self.orig_noise_value
            self.orig_noise = True
        elif distribution_idx == 5:
            # histogram equalization is always constant - no probabilistic effects!
            self.clone = True
        elif distribution_idx == 6:
            self.binary_orig = True
        elif distribution_idx == 7:
            if self.random:
                bin_pow = round(random.uniform(1.3, 2.7), 2)
            else:
                bin_pow = self.bin_pow
            self.binary_ones_pow = True
        elif distribution_idx == 8:
            if self.random:
                bin_pow = round(random.uniform(1.3, 2.7), 2)
            else:
                bin_pow = self.bin_pow
            self.binary_orig_pow = True
        elif distribution_idx == 9:
            self.binary_mask = True

        if self.orig_noise:
            # Add original noise to the sample
            sample_spec_n, _ = self.t_addnoise(sample_spec)
            sample_spec_n = self.t_compr_a(sample_spec_n)
            sample_spec_n = self.t_norm(sample_spec_n)
        elif self.clone:
            sample_spec_n = self.t_compr_a(sample_spec_ncmpr)
            sample_spec_n = self.t_norm(sample_spec_n)
            sample_spec_n = self.sp.search_maxima_spec(sample_spec_n, radius=2)
            sample_spec_n = torch.tensor(exposure.equalize_hist(np.nan_to_num(sample_spec_n.squeeze(dim=0).numpy())),
                                         dtype=torch.float)
            sample_spec_n = self.t_compr_f(sample_spec_n.unsqueeze(dim=0))
        elif self.binary_orig:
            # amplitude and normalized
            sample_spec_n = binary_input.clone()
            binary_mask = self.sp.create_mask(trainable_spectrogram=sample_spec_n).unsqueeze(dim=0)
            ground_truth = binary_input * binary_mask
            ground_truth = self.t_compr_f(ground_truth)
            sample_spec_n = self.t_compr_f(binary_input_not_cmpr_not_norm)
            sample_spec_n = self.t_compr_a(sample_spec_n)
            sample_spec_n = self.t_norm(sample_spec_n)
        elif self.binary_ones_pow:
            sample_spec_n = binary_input.clone()
            binary_mask = self.sp.create_mask(trainable_spectrogram=sample_spec_n).unsqueeze(dim=0)
            ground_truth = binary_input + binary_mask
            ground_truth[ground_truth >= 1.0] = 1.0
            ground_truth = ground_truth.pow(bin_pow)
            ground_truth = self.t_compr_f(ground_truth)
            sample_spec_n = self.t_compr_f(binary_input_not_cmpr_not_norm)
            sample_spec_n = self.t_compr_a(sample_spec_n)
            sample_spec_n = self.t_norm(sample_spec_n)
        elif self.binary_orig_pow:
            sample_spec_n = binary_input.clone()
            binary_mask = self.sp.create_mask(trainable_spectrogram=sample_spec_n).unsqueeze(dim=0)
            ground_truth = binary_input + binary_mask
            ground_truth[ground_truth >= 1.0] = 0.0
            ground_truth = ground_truth.pow(bin_pow)
            ground_truth = ground_truth + (sample_spec_n * binary_mask)
            ground_truth = self.t_compr_f(ground_truth)
            sample_spec_n = self.t_compr_f(binary_input_not_cmpr_not_norm)
            sample_spec_n = self.t_compr_a(sample_spec_n)
            sample_spec_n = self.t_norm(sample_spec_n)
        elif self.binary_mask:
            sample_spec_n = binary_input.clone()
            binary_mask = self.sp.create_mask(trainable_spectrogram=sample_spec_n).unsqueeze(dim=0)
            ground_truth = binary_mask
            ground_truth = self.t_compr_f(ground_truth)
            sample_spec_n = self.t_compr_f(binary_input_not_cmpr_not_norm)
            sample_spec_n = self.t_compr_a(sample_spec_n)
            sample_spec_n = self.t_norm(sample_spec_n)
        else:
            sample_spec_n = sample_spec + distribution
            sample_spec_n = self.t_norm(sample_spec_n)

        label = self.load_label(file)

        label["ground_truth"] = ground_truth
        label["file_name"] = label["file_name"].replace(label["file_name"].rsplit("/", 1)[1], str(distribution_idx)+"_"+label["file_name"].rsplit("/", 1)[1])

        return sample_spec_n, label
Esempio n. 60
0
def composite_fig(data, bands, title, scalebar_color=None, fig_name=None, max_size=16, hist_str=None, \
                  v_min = None, v_max = None):
    """
    Description:
      Create a three band (one time) composite figure
    -----
    Input:
      data: one time xarray.Dataset containing the three bands mentionned in bands.
      bands: bands to be used in the composite (RGB order).
      title: prefix of the figure title.
      scalebar_color (OPTIONAL): scalebar color (https://matplotlib.org/examples/color/named_colors.html)
      fig_name (OPTIONAL): file name (including extension) to save the figure (show only if not added to input).
      max_size (OPTIONAL, default 16): maximum size of the figure (either horizontal or vertical).
      hist_str: (OPTIONAL): histogram stretch type (['contr','eq','ad_eq']). Cannot be used with v_min, v_max options.
      v_min (OPTIONAL, default minimum value): minimum value to display. Cannot be used with hist_str option.
      v_max (OPTIONAL, default maximum value): maximum value to display. Cannot be used with hist_str option.
    Output:
      figure.
    """

    # check options combination
    assert not((hist_str is not None) and (v_min is not None or v_max is not None)) , \
           'hist_str option cannot be used with v_min, vmax options'
    assert not((v_min is not None) ^ (v_max is not None)), \
           'v_min option requires v_max option, and inverserly'
    if v_min is not None:
        assert v_min < v_max, 'v_min value must be lower than v_max'

    # Create a copy to unlink from original dataset
    rgb = data.copy(deep=True)

    height, width, orient, posit = fig_aspects(rgb.sizes, max_size)

    rgb = np.stack([rgb[bands[0]], rgb[bands[1]], rgb[bands[2]]])

    # perform stretch on each band
    for b in range(3):
        # https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
        # Contrast stretching
        if hist_str == 'contr':
            p2, p98 = np.nanpercentile(rgb[b], (2, 98))
            rgb[b] = exposure.rescale_intensity(rgb[b], in_range=(p2, p98))
        # Equalization
        if hist_str == 'eq':
            rgb[b] = exposure.equalize_hist(rgb[b])
        # Adaptive Equalization
        if hist_str == 'ad_eq':
            rgb[b] = exposure.equalize_adapthist(rgb[b], clip_limit=0.03)

    rgb = np.stack(rgb, axis=-1)

    # normalize between 0 and 1
    if v_min is None:
        rgb = (rgb - np.nanmin(rgb)) / (np.nanmax(rgb) - np.nanmin(rgb))
    else:
        rgb = (rgb - v_min) / (v_max - v_min)

    # Start plotting the figure
    plt.close('all')
    fig, ax = plt.subplots()
    fig.set_size_inches(width, height)
    im = ax.imshow(rgb, vmin=0, vmax=1)

    # add a scalebar if required
    if scalebar_color:
        ax.add_artist(create_scalebar(data, ax, scalebar_color))

    # ticks moved 1 pixel inside to guarantee they are displayed
    plt.yticks([rgb.shape[0] - 1, 1], xtrms_format(data.latitude.values))
    plt.xticks([1, rgb.shape[1] - 1], xtrms_format(data.longitude.values))

    plt.title(title, weight='bold', fontsize=16)

    fig.tight_layout()
    if fig_name:
        plt.savefig(fig_name, dpi=150)
        display(
            HTML("""<a href="{}" target="_blank" >View and download {}</a>""".
                 format(fig_name, basename(fig_name))))
    else:
        plt.show()
    plt.close()