Esempio n. 1
0
    def __getitem__(self, index):
        name = self.imgs_list[index]
        random.seed(0)
        torch.manual_seed(0)
        if self.prepare:
            ori_img = Image.open(name)
            img = Image.open(self.o_imgs_list[index])
            img = np.asarray(img)
            img = Image.fromarray(img)
            img = self.transforms(img)
        else:
            ori_img = Image.open(name)
            img = self.transforms(ori_img)

        ori_label = Image.open(self.labels_list[index])
        ori_label = np.asarray(ori_label)
        label = 2 - ori_label // 127
        if self.args.n_classes == 2:  # Convert to binary map
            label = np.where(label == 2, np.ones_like(label), np.zeros_like(label))
        # Keep the same transformation
        # TODO: There exists a bug, when you use ToTensor in transform.
        # TODO: The value will be changed in label
        random.seed(0)
        torch.manual_seed(0)
        label = np.asarray(self.gt_transforms(label.copy()))
        label = torch.from_numpy(label.copy())
        if not self.need_name:
            if self.fine_tune:
                return img, self.domain_label
            return img, label
        else:
            ori_img = np.asarray(ori_img)
            ori_label = np.expand_dims(ori_label, axis=-1)
            return img, label, name, ori_img, ori_label
Esempio n. 2
0
def label_onehotEncoding(label, num_class, backend='keras'):
    """    
    backend='pytorch'
    #input shape  (value  0,1,2,...)   : (image_depth,image_height,image_width)
    #output shape (values 0,1) : (num_class+1,image_depth,image_height,image_width)
    #background is 0, so channel should be num_class+1
    backend='keras'
    #input shape  (value  0,1,2,...)   : (image_depth,image_height,image_width)
    #output shape (values 0,1) : (num_class+1,image_depth,image_height,image_width)
    #background is 0, so channel should be num_class+1
    """

    dimension = len(label.shape)
    if dimension != 3:
        print('error')
    else:
        if backend == 'pytorch':
            label_onehot = np.zeros((num_class, label.shape[0], label.shape[1],
                                     label.shape[2]))  #torch
        else:
            label_onehot = np.zeros(
                (label.shape[0], label.shape[1], label.shape[2], num_class))

        for idx in range(num_class):
            label_temp = label.copy()  # torch --> clone()
            label_temp[label_temp != idx] = 0.
            label_temp[label_temp != 0.] = 1.

            if backend == 'pytorch':
                label_onehot[idx] = label_temp
            else:
                label_onehot[..., idx] = label_temp
    return label_onehot
Esempio n. 3
0
def dilate_erode_labels(label):
    """Substract an eroded label to a dilated one in order to prevent
    boundaries contact.

    Parameters
    ----------
    label : np.ndarray, np.uint or np.int
        Labelled image with shape (y, x).

    Returns
    -------
    label_final : np.ndarray, np.int64
        Labelled image with shape (y, x).

    """
    # check parameters
    stack.check_array(label, ndim=2, dtype=[np.uint8, np.uint16, np.int64])

    # handle 64 bit integer
    if label.dtype == np.int64:
        label = label.astype(np.uint16)

    # erode-dilate mask
    label_dilated = stack.dilation_filter(label, "disk", 2)
    label_eroded = stack.erosion_filter(label, "disk", 2)
    borders = label_dilated - label_eroded
    label_final = label.copy()
    label_final[borders > 0] = 0
    label_final = label_final.astype(np.int64)

    return label_final
Esempio n. 4
0
    def __getitem__(self, index):
        if self.args.dataset == 'meta_ORIGA':
            name = self.imgs_list[index + 101]
            ori_label = loadmat(self.labels_list[index + 101])['mask']
        else:
            name = self.imgs_list[index]
            ori_label = loadmat(self.labels_list[index])['mask']
        ori_img = Image.open(name)

        # Keep the same transformation
        seed = np.random.randint(999999999)
        random.seed(seed)
        torch.manual_seed(seed)
        # TODO: There exists a bug, when you use ToTensor in transform.
        # TODO: The value will be changed in label
        if self.args.dataset == 'meta_ORIGA':
            ori_label = np.argmax(ori_label, axis=-1).astype(np.uint8).copy()
        label = np.asarray(self.gt_transforms(ori_label.copy()))
        #label = np.expand_dims(label, axis=-1)
        label = torch.from_numpy(label.copy())
        if self.args.n_classes == 2:  # Convert to binary map
            label = torch.where(label > 0,
                                torch.ones_like(label), torch.zeros_like(label))

        if self.args.n_colors == 4:
            meta_data = plt.imread(self.meta_list[index])
            meta_data = np.expand_dims(meta_data, axis=-1)

        random.seed(seed)
        torch.manual_seed(seed)
        img = self.transforms(ori_img)
        if not self.need_name:
            if  self.args.n_colors == 4:
                meta_data = np.transpose(meta_data, (2, 0, 1))
                return img, meta_data, label
            return img, label
        else:
            ori_img = cv2.resize(np.asarray(ori_img), (3072, 2048))
            ori_label = cv2.resize(ori_label, (3072, 2048))
            ori_label = np.expand_dims(ori_label, axis=-1)
            return img, label, name, ori_img, ori_label
Esempio n. 5
0
def main():
    opt = TestOptions()
    args = opt.initialize()

    if not os.path.exists(args.save):
        os.makedirs(args.save)

    model = CreateSSLModel(args)
    cudnn.enabled = True
    cudnn.benchmark = True
    model.train()
    model.cuda()
    targetloader = CreateTrgDataSSLLoader(args)

    #predicted_label = np.zeros((len(targetloader), 1634, 1634))
    predicted_label = np.zeros((len(targetloader), 2056, 2124))
    #predicted_prob = np.zeros((len(targetloader), 1634, 1634))
    predicted_prob = np.zeros((len(targetloader), 2056, 2124))
    image_name = []

    for index, batch in enumerate(targetloader):
        if index % 10 == 0:
            print('%d processd' % index)
        image, _, name = batch
        image = Variable(image).cuda()
        _, output, _, _ = model(image, ssl=True)
        output = nn.functional.softmax(output / args.alpha, dim=1)
        #output = nn.functional.upsample(output, (1634, 1634), mode='bilinear', align_corners=True).cpu().data[0].numpy()
        output = nn.functional.upsample(
            output, (2056, 2124), mode='bilinear',
            align_corners=True).cpu().data[0].numpy()
        output = output.transpose(1, 2, 0)
        label, prob = np.argmax(output, axis=2), np.max(output, axis=2)
        cup_mask = get_bool(label, 0)
        disc_mask = get_bool(label, 0) + get_bool(label, 1)
        disc_mask = disc_mask.astype(np.uint8)
        cup_mask = cup_mask.astype(np.uint8)
        for i in range(5):
            disc_mask = scipy.signal.medfilt2d(disc_mask, 19)
            cup_mask = scipy.signal.medfilt2d(cup_mask, 19)
        disc_mask = morphology.binary_erosion(disc_mask,
                                              morphology.diamond(7)).astype(
                                                  np.uint8)  # return 0,1
        cup_mask = morphology.binary_erosion(cup_mask,
                                             morphology.diamond(7)).astype(
                                                 np.uint8)  # return 0,1
        disc_mask = get_largest_fillhole(disc_mask)
        cup_mask = get_largest_fillhole(cup_mask)

        disc_mask = morphology.binary_dilation(disc_mask,
                                               morphology.diamond(7)).astype(
                                                   np.uint8)  # return 0,1
        cup_mask = morphology.binary_dilation(cup_mask,
                                              morphology.diamond(7)).astype(
                                                  np.uint8)  # return 0,1

        disc_mask = get_largest_fillhole(disc_mask).astype(
            np.uint8)  # return 0,1
        cup_mask = get_largest_fillhole(cup_mask).astype(np.uint8)
        label = disc_mask + cup_mask
        predicted_label[index] = label.copy()
        predicted_prob[index] = prob.copy()
        image_name.append(name[0])

    thres = []
    for i in range(3):
        x = predicted_prob[predicted_label == i]
        if len(x) == 0:
            thres.append(0)
            continue
        x = np.sort(x)
        #print(len(x))
        print(i, x)
        print(np.sum(x < 0.5), '/', len(x), np.sum(x < 0.5) / len(x))
        #thres.append(x[np.int(np.round(len(x) *int(args.p[i])))])
        thres.append(0.5)
    thres = np.array(thres)
    print(thres)
    # thres[thres > 0.6] = 0.6

    color_labels = {0: 255, 1: 128, 2: 0}
    #import pdb;pdb.set_trace()
    for index in range(len(targetloader)):
        name = image_name[index]
        label = predicted_label[index]  # label_min:0 label_max=2
        #print(label)
        prob = predicted_prob[index]  # prob_min:0.5 prob_max=1.0
        #print(prob)
        for i, color in color_labels.items():
            label[label == i] = color
            #print(thres[i])
            label[(prob > thres[i]) * (label == i)] = color
        output = np.asarray(label, dtype=np.uint8)
        output = Image.fromarray(output.astype(np.uint8))
        #name = name.split('.')[0] + '.png'
        name = name.split('_')[0] + '.bmp'
        output.save('%s/%s' % (args.save, name))

    disc_dice, cup_dice = calculate_dice(args.gt_dir, args.save,
                                         args.devkit_dir)
    print('===> disc_dice:' + str(round(disc_dice, 3)) + '\t' + 'cup_dice:' +
          str(round(cup_dice, 3)))