Esempio n. 1
0
def nrmse_3d(y_true, y_pred, norm_type='min-max'):
    """Get the mean rmse of a 3 dim array with shape axes ZXY or ZYX
    I think the authors are using min-max"""
    z = []
    for i in range(len(y_true)):
        z.append(nrmse(y_true, y_pred, norm_type))
    return np.mean(z)
Esempio n. 2
0
def get_scores(img1, img2, method="ssim"):

    if method == "ssim":
        return ssim(img1, img2)
    elif method == ["mse"]:
        return mse(img1, img2)
    elif method == "nrmse":
        return nrmse(img1, img2)

    return None
Esempio n. 3
0
def compute_image_quality_metrics(ground_truth_images, ground_truth_angles, generated_images, generated_angles):
    # order the images according to ascending angle
    ground_truth_images = ground_truth_images[np.argsort(ground_truth_angles[:, 0], 0)]
    generated_images = generated_images[np.argsort(generated_angles[:, 0], 0)]

    loop_mse, loop_nrmse, loop_ssim = [], [], []
    for (im_gt, im_gen) in zip(ground_truth_images, generated_images):
        loop_mse.append(mse(im_gt, im_gen))
        loop_nrmse.append(nrmse(im_gt, im_gen))
        loop_ssim.append(ssim(im_gt.squeeze(), im_gen.squeeze()))
    return np.array(loop_mse).mean(), np.array(loop_nrmse).mean(), np.array(loop_ssim).mean()
Esempio n. 4
0
def calculate_nrmse_similarity(pair):
    """Compute the normalized root mean-squared error (NRMSE) between two images.

    :param pair: image pair to compare
    :return:
    """
    image1, image2 = __check_files_and_open(pair)
    img1f = img_as_float(image1)
    img2f = img_as_float(image2)
    similarity = nrmse(img1f, img2f)
    pair.similarity = round(similarity, 3)
def plot_one(ax, true, pred, title=None, gray=True):
    """Plots predicted image and calculates measures: nrmse, ssim, psnr.

    Parameters
    ----------
    ax : 
        Matplotlib axes for plotting
    true : PIL.Image
        Ground truth Image for measures calculation
    pred : PIL.Image
        Predicted Image for measures calculation
    title : str, optional
        Set plot title
    gray : bool
        Flag, if true expecting grayscale image, if false RGB image"""

    label = 'NRMSE: {:.3f}; SSIM: {:.3f};  PSNR: {:.3f}'

    #convert images to numpy array
    if gray:
        arr_t = np.array(true)[:, :, 0]
        arr_p = np.array(pred)[:, :, 0]
        multichannel = False
    else:
        arr_t = np.array(true)
        arr_p = np.array(pred)
        multichannel = True

    assert arr_t.shape==arr_p.shape, \
           f'Shapes of input images must match: true:{arr_t.shape} pred:{arr_p.shape}'

    ax.imshow(pred, cmap='gray', vmin=0, vmax=255)
    ax.set_axis_off()
    if title is not None: ax.set_title(title)
    ax.annotate(xy=(0, -.1),
                s=label.format(nrmse(arr_p, arr_t),
                               ssim(arr_p, arr_t, multichannel=multichannel),
                               psnr(arr_p, arr_t)),
                xycoords='axes fraction')
Esempio n. 6
0
def normalized_root_mean_square_error(window_orig,
                                      window_warped,
                                      weights=False):
    #    MSE = math.sqrt(np.mean(waights*(window_orig - window_warped) ** 2))/np.mean(window_orig - window_warped)
    NRMSE = nrmse(window_orig, window_warped)
    return NRMSE
def calc_and_save_all_metrics(test_set: Type[LightFieldDataset],
                              output_path: os.path,
                              h5_file_loc: os.path = None,
                              h5_dataset_key: str = None) -> dict:
    with h5py.File(h5_file_loc, 'a') as h5_file:
        output_images = h5_file[h5_dataset_key]

        all_targets_shape = (len(test_set), test_set.num_views_y,
                             test_set.num_channels, test_set.height_y,
                             test_set.width_y)

        assert output_images.shape == all_targets_shape

        # TODO: If the images are in an array we need to reshape them
        # TODO: And again when saving.

        num_images = all_targets_shape[0]
        num_views = all_targets_shape[1]
        ssim_results = np.zeros((num_images, num_views), dtype=np.float32)
        psnr_results = np.zeros((num_images, num_views), dtype=np.float32)
        mse_results = np.zeros((num_images, num_views), dtype=np.float32)
        nrmse_results = np.zeros((num_images, num_views), dtype=np.float32)

        ssim_meter = AverageMeter(name='SSIM', cum=False)
        custom = CustomProgressBar(label='SSIM')

        print("Calculating image metrics.")
        for image_idx in custom.bar(range(num_images)):
            target_lf = test_set.get_only_y(image_idx)
            for view_idx in range(num_views):
                target_reshape = np.moveaxis(target_lf[view_idx], -3, -1)
                output_reshape = np.moveaxis(
                    output_images[image_idx, view_idx], -3, -1)
                ssim_results[image_idx, view_idx] = ssim(target_reshape,
                                                         output_reshape,
                                                         multichannel=True)
                psnr_results[image_idx,
                             view_idx] = psnr(target_reshape, output_reshape)
                mse_results[image_idx, view_idx] = mse(target_reshape,
                                                       output_reshape)
                nrmse_results[image_idx,
                              view_idx] = nrmse(target_reshape, output_reshape)

            # Log errors
            ssim_meter.update(float(np.mean(ssim_results[image_idx])))

            custom.format_custom_text.update_mapping(value=ssim_meter.value())

        metrics = {
            'ssim_avg': float(np.mean(ssim_results)),
            'ssim_std': float(np.std(ssim_results)),
            'psnr_avg': float(np.mean(psnr_results)),
            'psnr_std': float(np.std(psnr_results)),
            'mse_avg': float(np.mean(mse_results)),
            'mse_std': float(np.std(mse_results)),
            'nrmse_avg': float(np.mean(nrmse_results)),
            'nrmse_std': float(np.std(nrmse_results))
        }

        # Also save to a json for easy viewing.
        with open(os.path.join(output_path, "metrics.json"), 'w') as fp:
            json.dump(metrics, fp, indent=4, sort_keys=True)

        output_images.attrs.create('ssim', ssim_results)
        output_images.attrs.create('psnr', psnr_results)
        output_images.attrs.create('mse', mse_results)
        output_images.attrs.create('nrmse', nrmse_results)

        output_images.attrs.create('ssim_avg', metrics['ssim_avg'])
        output_images.attrs.create('ssim_std', metrics['ssim_std'])
        output_images.attrs.create('psnr_avg', metrics['psnr_avg'])
        output_images.attrs.create('psnr_std', metrics['psnr_std'])
        output_images.attrs.create('mse_avg', metrics['mse_avg'])
        output_images.attrs.create('mse_std', metrics['mse_std'])
        output_images.attrs.create('nrmse_avg', metrics['nrmse_avg'])
        output_images.attrs.create('nrmse_std', metrics['nrmse_std'])
Esempio n. 8
0
def fPredict(test_ref, test_art, dParam, dHyper):
    weights_file = dParam['sOutPath'] + os.sep + '{}.h5'.format(
        dHyper['bestModel'])

    patchSize = dParam['patchSize']

    vae = createModel(patchSize, dHyper)

    vae.compile(optimizer='adam', loss=None)

    vae.load_weights(weights_file)

    test_ref = np.expand_dims(test_ref, axis=1)
    test_art = np.expand_dims(test_art, axis=1)

    predict_ref, predict_art = vae.predict([test_ref, test_art],
                                           dParam['batchSize'][0],
                                           verbose=1)

    test_ref = np.squeeze(test_ref, axis=1)
    test_art = np.squeeze(test_art, axis=1)
    predict_art = np.squeeze(predict_art, axis=1)

    if dHyper['unpatch']:
        test_ref = fRigidUnpatchingCorrection2D(dHyper['actualSize'], test_ref,
                                                dParam['patchOverlap'])
        test_art = fRigidUnpatchingCorrection2D(dHyper['actualSize'], test_art,
                                                dParam['patchOverlap'])
        predict_art = fRigidUnpatchingCorrection2D(dHyper['actualSize'],
                                                   predict_art,
                                                   dParam['patchOverlap'],
                                                   'average')

        # pre TV processing
        test_art_tv_1 = denoise_tv_chambolle(test_art, weight=1)
        test_art_tv_3 = denoise_tv_chambolle(test_art, weight=3)
        test_art_tv_5 = denoise_tv_chambolle(test_art, weight=5)

        if dHyper['evaluate']:
            if dParam['lSaveIndividual']:
                fig = plt.figure()
                plt.gray()
                label = 'NRMSE: {:.2f}, SSIM: {:.3f}, NMI: {:.3f}'
                for i in range(len(test_ref)):
                    ax = imshow(test_ref[i])
                    plt.xticks([])
                    plt.yticks([])
                    ax.set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_ref[i]),
                            ssim(test_ref[i],
                                 test_ref[i],
                                 data_range=(test_ref[i].max() -
                                             test_ref[i].min())),
                            nmi(test_ref[i].flatten(), test_ref[i].flatten())))
                    ax.set_title('reference image')
                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + 'reference_' + str(i) + '.png')
                    else:
                        plt.show()

                    ax = imshow(test_art[i])
                    plt.xticks([])
                    plt.yticks([])
                    ax.set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art[i]),
                            ssim(test_ref[i],
                                 test_art[i],
                                 data_range=(test_art[i].max() -
                                             test_art[i].min())),
                            nmi(test_ref[i].flatten(), test_art[i].flatten())))
                    ax.set_title('motion-affected image')
                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + 'art_' + str(i) + '.png')
                    else:
                        plt.show()

                    ax = imshow(predict_art[i])
                    plt.xticks([])
                    plt.yticks([])
                    ax.set_xlabel(
                        label.format(
                            nrmse(test_ref[i], predict_art[i]),
                            ssim(test_ref[i],
                                 predict_art[i],
                                 data_range=(predict_art[i].max() -
                                             predict_art[i].min())),
                            nmi(test_ref[1].flatten(),
                                predict_art[i].flatten())))
                    ax.set_title('reconstructed image')
                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + 'recon_' + str(i) + '.png')
                    else:
                        plt.show()

                    ax = imshow(test_art_tv_1[i])
                    plt.xticks([])
                    plt.yticks([])
                    ax.set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art_tv_1[i]),
                            ssim(test_ref[i],
                                 test_art_tv_1[i],
                                 data_range=(test_art_tv_1[i].max() -
                                             test_art_tv_1[i].min())),
                            nmi(test_ref[i].flatten(),
                                test_art_tv_1[i].flatten())))
                    ax.set_title('TV weight 1')
                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + 'tv1_' + str(i) + '.png')
                    else:
                        plt.show()

                    ax = imshow(test_art_tv_3[i])
                    plt.xticks([])
                    plt.yticks([])
                    ax.set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art_tv_3[i]),
                            ssim(test_ref[i],
                                 test_art_tv_3[i],
                                 data_range=(test_art_tv_3[i].max() -
                                             test_art_tv_3[i].min())),
                            nmi(test_ref[i].flatten(),
                                test_art_tv_3[i].flatten())))
                    ax.set_title('TV weight 3')
                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + 'tv3_' + str(i) + '.png')
                    else:
                        plt.show()

                    ax = imshow(test_art_tv_5[i])
                    plt.xticks([])
                    plt.yticks([])
                    ax.set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art_tv_5[i]),
                            ssim(test_ref[i],
                                 test_art_tv_5[i],
                                 data_range=(test_art_tv_5[i].max() -
                                             test_art_tv_5[i].min())),
                            nmi(test_ref[i].flatten(),
                                test_art_tv_5[i].flatten())))
                    ax.set_title('TV weight 5')
                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + 'tv5_' + str(i) + '.png')
                    else:
                        plt.show()

            else:
                fig, axes = plt.subplots(nrows=2,
                                         ncols=3,
                                         figsize=(15, 10),
                                         sharex=True,
                                         sharey=True)
                # fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 15), sharex=True, sharey=True)
                ax = axes.ravel()
                plt.gray()
                label = 'NRMSE: {:.2f}, SSIM: {:.3f}, NMI: {:.3f}'

                for i in range(len(test_ref)):
                    # orignal reconstructed images
                    ax[0].imshow(test_ref[i])
                    ax[0].set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_ref[i]),
                            ssim(test_ref[i],
                                 test_ref[i],
                                 data_range=(test_ref[i].max() -
                                             test_ref[i].min())),
                            nmi(test_ref[i].flatten(), test_ref[i].flatten())))
                    ax[0].set_title('reference image')

                    ax[1].imshow(test_art[i])
                    ax[1].set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art[i]),
                            ssim(test_ref[i],
                                 test_art[i],
                                 data_range=(test_art[i].max() -
                                             test_art[i].min())),
                            nmi(test_ref[i].flatten(), test_art[i].flatten())))
                    ax[1].set_title('motion-affected image')

                    ax[2].imshow(predict_art[i])
                    ax[2].set_xlabel(
                        label.format(
                            nrmse(test_ref[i], predict_art[i]),
                            ssim(test_ref[i],
                                 predict_art[i],
                                 data_range=(predict_art[i].max() -
                                             predict_art[i].min())),
                            nmi(test_ref[1].flatten(),
                                predict_art[i].flatten())))
                    ax[2].set_title('reconstructed image')

                    # TV denoiser
                    ax[3].imshow(test_art_tv_1[i])
                    ax[3].set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art_tv_1[i]),
                            ssim(test_ref[i],
                                 test_art_tv_1[i],
                                 data_range=(test_art_tv_1[i].max() -
                                             test_art_tv_1[i].min())),
                            nmi(test_ref[i].flatten(),
                                test_art_tv_1[i].flatten())))
                    ax[3].set_title('TV weight 1')

                    ax[4].imshow(test_art_tv_3[i])
                    ax[4].set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art_tv_3[i]),
                            ssim(test_ref[i],
                                 test_art_tv_3[i],
                                 data_range=(test_art_tv_3[i].max() -
                                             test_art_tv_3[i].min())),
                            nmi(test_ref[i].flatten(),
                                test_art_tv_3[i].flatten())))
                    ax[4].set_title('TV weight 3')

                    ax[5].imshow(test_art_tv_5[i])
                    ax[5].set_xlabel(
                        label.format(
                            nrmse(test_ref[i], test_art_tv_5[i]),
                            ssim(test_ref[i],
                                 test_art_tv_5[i],
                                 data_range=(test_art_tv_5[i].max() -
                                             test_art_tv_5[i].min())),
                            nmi(test_ref[i].flatten(),
                                test_art_tv_5[i].flatten())))
                    ax[5].set_title('TV weight 5')

                    if dParam['lSave']:
                        plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                    os.sep + str(i) + '.png')
                    else:
                        plt.show()

        else:
            plt.figure()
            plt.gray()
            for i in range(predict_art.shape[0]):
                plt.imshow(predict_art[i])
                if dParam['lSave']:
                    plt.savefig(dParam['sOutPath'] + os.sep + 'result' +
                                os.sep + str(i) + '.png',
                                dpi=300)
                else:
                    plt.show()
    else:
        nPatch = predict_art.shape[0]

        for i in range(nPatch // 4):
            fig, axes = plt.subplots(nrows=4, ncols=2)
            plt.gray()

            cols_title = ['original_art', 'predicted_art']

            for ax, col in zip(axes[0], cols_title):
                ax.set_title(col)

            for j in range(4):
                axes[j, 0].imshow(test_art[4 * i + j])
                axes[j, 1].imshow(predict_art[4 * i + j])

            if dParam['lSave']:
                plt.savefig(dParam['sOutPath'] + os.sep + 'result' + os.sep +
                            str(i) + '.png')
            else:
                plt.show()
Esempio n. 9
0
def cnrmse(A, B):
    return np.sqrt(nrmse(A, B) * nrmse(B, A))
Esempio n. 10
0
def main():
		parser = argparse.ArgumentParser(description='Select the type of reduced.')
		parser.add_argument("-f", "--filename", type=str, required=True,
												help='Path to the file the contains the dictionary with the info of the dataset reduced.')

		args = vars(parser.parse_args())

		info_filename = args["filename"]

		# test set
		with open(info_filename, "rb") as fp:  # Unpickling
				images_info = pickle.load(fp)

		grouper = itemgetter('parkinglot', 'space')
		images_info = sorted(images_info, key=grouper)

		parkinglots = extractUniqueItemsByKey(images_info, 'parkinglot')

		images_info_by_patkinglot = {}

		for parkinglot in parkinglots:
				image_info_parkinglot = [i for i in images_info if i['parkinglot'] == parkinglot]
				spaces_parkinglot = extractUniqueItemsByKey(image_info_parkinglot, 'space')
				images_info_by_spaces = {}
				for space in spaces_parkinglot:
						images_info_by_spaces[space] = [getNewImageInfo(i) for i in image_info_parkinglot if i['space'] == space]
				images_info_by_patkinglot[parkinglot] = images_info_by_spaces

		# Hasta este punto ya tengo un dictionario dividido por estacionamiento que a su vez se divide por espacios

		# Voy a obtener la lista de un espacio en particular de un estacionamiento, voy a obtener el primer espacio vacio que
		# encuentre y despues voy a compararlo con los demas
		# Mostrar en una ventana el espacio vacio y en la otra la comparacion y el resultado

		empty_space_filepath = ''

		errors = []
		for parkinglot, images_info_by_spaces in images_info_by_patkinglot.items():
				for space, images_info_of_space in images_info_by_spaces.items():
						error_count_empty = 0
						error_count_occupied = 0
						error_empty = 0
						error_occupied = 0
						empty_space_filepath = ''
						example_list = images_info_of_space
						for example in tqdm(example_list):
								if example['state'] == '0' and len(empty_space_filepath) == 0:
										empty_space_filepath = example['filepath']
										img_empty_space = getGrayscaleImage(empty_space_filepath)
										break
						for example in tqdm(example_list):
								comparision_space_filepath = example['filepath']
								img_comparision_space = getGrayscaleImage(comparision_space_filepath)
								try:
										sim = ssim(img_empty_space, img_comparision_space)
								except:
										height1, width1 = img_empty_space.shape
										img_comparision_space = cv2.resize(img_comparision_space, (width1, height1))
										sim = ssim(img_empty_space, img_comparision_space)
								nm = nrmse(img_empty_space, img_comparision_space)
								# m = mse(img_empty_space, img_comparision_space)
								space_comparing_name = 'state: {} sim: {} nrmse: {}'.format(example['state'], sim, nm)

								if sim < 0.4 and example['state'] == '0':
										error_count_empty += 1
										error_empty += abs(0.4 - sim)
								if sim >= 0.4 and example['state'] == '1':
										error_count_occupied += 1
										error_occupied += abs(sim - 0.4)

								if sim > 0.7:
										empty_space_filepath = example['filepath']
										img_empty_space = img_comparision_space
								"""
								fig = plt.figure('title')
								plt.suptitle(space_comparing_name)

								# show first image
								ax = fig.add_subplot(1, 2, 1)
								plt.imshow(img_empty_space, cmap=plt.cm.gray)
								plt.axis("off")

								# show the second image
								ax = fig.add_subplot(1, 2, 2)
								plt.imshow(img_comparision_space, cmap=plt.cm.gray)
								plt.axis("off")

								# show the images
								plt.show()
								"""

						error_occupied = 0 if error_count_occupied == 0 else (error_occupied / error_count_occupied)
						error_empty = 0 if error_count_empty == 0 else (error_empty / error_count_empty)
						print('In the space {} in a total of {} there was an error of occupied {} {} empty {} {}'.format(space, len(
								example_list), error_count_occupied, error_occupied, error_count_empty, error_empty))
						errors.append({'parkinglot': parkinglot, 'space': space, 'total': len(example_list),
													 'error_count_occupied': error_count_occupied,
													 'error_occupied': error_occupied,
													 'error_count_empty': error_count_empty, 'error_empty': error_empty})

		info = {'dataset': info_filename, 'threshold': 0.4, 'comparision_method': 'sim', 'errors': errors}
		dataset_name = ntpath.basename(info_filename).split('.')[0]
		feedback_filename = '{}_{}_{}.json'.format(dataset_name, 0.4, 'sim')
		with open(feedback_filename, 'w') as outfile:
				json.dump(info, outfile)