def test_hough_line_bad_input():
    img = np.zeros(100)
    img[10] = 1

    # Expected error, img must be 2D
    with testing.raises(ValueError):
        transform.hough_line(img, np.linspace(0, 360, 10))
Esempio n. 2
0
def compareImages():
    image1 = Image.open("../Images/image5.png")
    image2 = Image.open("../Images/image5_bold.png")
    
    blurredImage1 = image1.filter(ImageFilter.GaussianBlur(radius = 2))
    imageData1 = toMatrix(blurredImage1, blurredImage1.size[1], blurredImage1.size[0])
    blurredImage2 = image2.filter(ImageFilter.GaussianBlur(radius = 2))
    imageData2 = toMatrix(blurredImage2, blurredImage2.size[1], blurredImage2.size[0])
    
    h1, theta1, d1 = hough_line(imageData1)
    h2, theta2, d2 = hough_line(imageData2)
Esempio n. 3
0
 def houghLine(img2d):
     "gray input"
     med_filter = ndimg.median_filter(img2d, size = (5,5))
     edges = filter.sobel(med_filter/255.)
     [H,theta,distances] = transform.hough_line(edges);
     imgsize = float(len(theta)*len(distances))
     return H.sum()/imgsize
Esempio n. 4
0
def calculate_rotation(image):
    # sometimes we snag corners, by cropping the left and right 10% of the image we focus only on the
    # vertical bars formed by the structure
    height, width = image.shape
    crop = int(width * 0.1)
    cropped_image = image[:, crop: width - crop]
    # Find edges that have a strong vertical direction
    vertical_edges = sobel_v(cropped_image)
    # Separate out the areas where there is a large amount of vertically-oriented stuff
    segmentation = segment_edge_areas(vertical_edges)
    # Draw a line that follows the center of the segments at each point, which should be roughly vertical
    # We should expect this to give us four approximately-vertical lines, possibly with many gaps in
    # each line
    skeletons = skeletonize(segmentation)
    # Use the Hough transform to get the closest lines that approximate those four lines
    hough = transform.hough_line(skeletons, np.arange(-constants.FIFTEEN_DEGREES_IN_RADIANS,
                                                      constants.FIFTEEN_DEGREES_IN_RADIANS,
                                                      0.0001))
    # Create a list of the angles (in radians) of all of the lines the Hough transform produced, with 0.0
    # being completely vertical
    # These angles correspond to the angles of the four sides of the channels, which we need to
    # correct for
    angles = [angle for _, angle, dist in zip(*transform.hough_line_peaks(*hough))]
    if not angles:
        raise ValueError("Image rotation could not be calculated. Check the images to see if they're weird.")
    else:
        # Get the average angle and convert it to degrees
        offset = sum(angles) / len(angles) * 180.0 / math.pi
        if offset > constants.ACCEPTABLE_SKEW_THRESHOLD:
            log.warn("Image is heavily skewed. Check that the images are valid.")
        return offset
Esempio n. 5
0
def rotate_pic(pic):
    """
    rotate_pic finds the offset angle by measuring the grid with a Hough line transform. It then de-rotates by this amount
    """

    # for speed, only look at a 500x500 slice in the center of the image
    centercut = np.copy(
        pic[int(pic.shape[0] / 2.) - 500:int(pic.shape[0] / 2.) + 500,
            int(pic.shape[1] / 2.) - 500:int(pic.shape[1] / 2.) + 500, 0])

    # find the grid in the image by looking for brighter regions
    centermask = (centercut < 1) * (centercut > 0.8)

    h, theta, d = tf.hough_line(centermask,
                                theta=np.linspace(np.pi / 2 - 0.2,
                                                  np.pi / 2 + 0.2, 1000))
    _, angles, dist = tf.hough_line_peaks(h, theta, d)

    # plt.figure()
    # plt.imshow(centermask)
    # for ii in range(len(angles)):
    #     rho = dist[ii]
    #     theta = angles[ii]
    #
    #     y0 = (rho - 0 * np.cos(theta)) / np.sin(theta)
    #     y1 = (rho - centermask.shape[1] * np.cos(theta)) / np.sin(theta)
    #
    #     plt.plot([0,centermask.shape[0]],[y0,y1],'r-')

    angle = np.mean(angles * 180 / np.pi - 90)

    corrected_pic = tf.rotate(pic, angle, cval=1)

    return corrected_pic, angle
Esempio n. 6
0
def show_hough_transform(image):
    h, theta, d = hough_line(canny(image))

    fig, ax = plt.subplots(1, 3, figsize=(15, 6))

    ax[0].imshow(image, cmap=cm.gray)
    ax[0].set_title('Input image')
    ax[0].set_axis_off()

    ax[1].imshow(
        np.log(1 + h),
        extent=[np.rad2deg(theta[-1]),
                np.rad2deg(theta[0]), d[-1], d[0]],
        cmap='gray',
        aspect=1 / 20)
    ax[1].set_title('Hough transform')
    ax[1].set_xlabel('Angles (degrees)')
    ax[1].set_ylabel('Distance (pixels)')

    ax[2].imshow(image, cmap=cm.gray)
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - image.shape[1] * np.cos(angle)) / np.sin(angle)
        ax[2].plot((0, image.shape[1]), (y0, y1), '-r')
    ax[2].set_xlim((0, image.shape[1]))
    ax[2].set_ylim((image.shape[0], 0))
    ax[2].set_axis_off()
    ax[2].set_title('Detected lines')

    plt.tight_layout()
    return hough_line_peaks(h, theta, d)
Esempio n. 7
0
def hough_detect(binary_maps, vote_thresh=12):
    """ Use the Hough detection method to detect lines in the data.
    With enough lines, you can fill in the wave front."""
    detection = []
    print("Performing hough transform on binary maps...")
    for img in binary_maps:
        # Perform the hough transform on each of the difference maps
        transform, theta, d = hough_line(img.data)

        # Filter the hough transform results and find the best lines in the
        # data.  Keep detections that exceed the Hough vote threshold.
        indices = (transform>vote_thresh).nonzero()
        distances = d[indices[0]]
        theta = theta[indices[1]]

        # Perform the inverse transform to get a series of rectangular
        # images that show where the wavefront is.
        # Create a map which is the same as the
        invTransform = sunpy.map.Map(np.zeros(img.data.shape), img.meta)
        invTransform.data = np.zeros(img.data.shape)
        
        # Add up all the detected lines over each other.  The idea behind
        # adding up all the lines on top of each other is that pixels that
        # have larger number of detections are more likely to be in the
        # wavefront.  Note that we are using th Hough transform - which is used
        # to detect lines - to detect and fill in a region.  You might see this
        # as an abuse of the Hough transform!
        for i in range(0,len(indices[1])):
            nextLine = htLine(distances[i], theta[i], np.zeros(shape=img.data.shape))
            invTransform = invTransform + nextLine

        detection.append(invTransform)

    return detection
def test_hough_line_peaks_single_angle():
    # Regression test for gh-4814
    # This code snippet used to raise an IndexError
    img = np.random.random((100, 100))
    tested_angles = np.array([np.pi / 2])
    h, theta, d = transform.hough_line(img, theta=tested_angles)
    accum, angles, dists = transform.hough_line_peaks(h, theta, d, threshold=2)
def test_hough_line_peaks_num():
    img = np.zeros((100, 100), dtype=np.bool_)
    img[:, 30] = True
    img[:, 40] = True
    hspace, angles, dists = tf.hough_line(img)
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_distance=0,
                                   min_angle=0, num_peaks=1)[0]) == 1
def test_hough_line_angles():
    img = np.zeros((10, 10))
    img[0, 0] = 1

    out, angles, d = tf.hough_line(img, np.linspace(0, 360, 10))

    assert_equal(len(angles), 10)
Esempio n. 11
0
def igs1_measure_hough(realization,model,redshift=1.0,big_fiducial_set=False,threshold=0.1,bins=np.linspace(0.0,0.0014,50)):


	"""
	Measures all the statistical descriptors of a convergence map as indicated by the index instance
	
	"""

	logging.debug("Processing {0}".format(model.getNames(realization,z=redshift,big_fiducial_set=big_fiducial_set,kind="convergence")))

	#Load the map
	conv_map = model.load(realization,z=redshift,big_fiducial_set=big_fiducial_set,kind="convergence")

	#Log to user
	logging.debug("Measuring hough histograms...")

	#Compute the hough transform
	linmap = conv_map.data > np.random.rand(*conv_map.data.shape) * threshold
	out,angle,d = hough_line(linmap)

	#Compute the histogram of the hough transform map
	h,b = np.histogram(out.flatten()*1.0/linmap.sum(),bins=bins)

	#Return
	return h
Esempio n. 12
0
def test_hough_line_peaks_zero_input():
    # Test to make sure empty input doesn't cause a failure
    img = np.zeros((100, 100), dtype='uint8')
    theta = np.linspace(0, np.pi, 100)
    hspace, angles, dists = transform.hough_line(img, theta)
    h, a, d = transform.hough_line_peaks(hspace, angles, dists)
    assert_equal(a, np.array([]))
def identify_based_on_lines(img_edges):
    # Find lines using hough transform
    hspace, theta, dists = transform.hough_line(img_edges)

    # Extract lines
    lines = transform.hough_line_peaks(hspace, theta, dists, num_peaks=10)

    # Convert lines to list of lines
    lines = np.array(list(zip(*lines)),
                     dtype=[('hspace', np.uint64), ('angle', np.float),
                            ('dist', np.float)])

    shape_likeness = np.zeros(Shape.count)
    for i in range(1, Shape.count):
        shape = Shape.iterator[i]
        if shape == Shape.CAKE:
            hval = 0.0
            if len(lines) >= 3:
                hval = abs(((lines[0][0] + lines[1][0]) * 0.5) - lines[2][0])
            if hval >= 5.0:
                shape_likeness[i] = 0.0
            else:
                shape_likeness[i] = 10.0
        else:
            shape_likeness[i] = abs(shape.line_count - len(lines))
    return shape_likeness
Esempio n. 14
0
def hough_detect(binary_maps, vote_thresh=12):
    """ Use the Hough detection method to detect lines in the data.
    With enough lines, you can fill in the wave front."""
    detection = []
    print("Performing hough transform on binary maps...")
    for img in binary_maps:
        # Perform the hough transform on each of the difference maps
        transform, theta, d = hough_line(img.data)

        # Filter the hough transform results and find the best lines in the
        # data.  Keep detections that exceed the Hough vote threshold.
        indices = (transform>vote_thresh).nonzero()
        distances = d[indices[0]]
        theta = theta[indices[1]]

        # Perform the inverse transform to get a series of rectangular
        # images that show where the wavefront is.
        # Create a map which is the same as the
        invTransform = sunpy.map.Map(np.zeros(img.data.shape), img.meta)
        invTransform.data = np.zeros(img.data.shape)
        
        # Add up all the detected lines over each other.  The idea behind
        # adding up all the lines on top of each other is that pixels that
        # have larger number of detections are more likely to be in the
        # wavefront.  Note that we are using th Hough transform - which is used
        # to detect lines - to detect and fill in a region.  You might see this
        # as an abuse of the Hough transform!
        for i in range(0,len(indices[1])):
            nextLine = htLine(distances[i], theta[i], np.zeros(shape=img.data.shape))
            invTransform = invTransform + nextLine

        detection.append(invTransform)

    return detection
Esempio n. 15
0
def test_hough_line_peaks_zero_input():
    # Test to make sure empty input doesn't cause a failure
    img = np.zeros((100, 100), dtype='uint8')
    theta = np.linspace(0, np.pi, 100)
    hspace, angles, dists = transform.hough_line(img, theta)
    h, a, d = transform.hough_line_peaks(hspace, angles, dists)
    assert_equal(a, np.array([]))
Esempio n. 16
0
def test_hough_line_angles():
    img = np.zeros((10, 10))
    img[0, 0] = 1

    out, angles, d = transform.hough_line(img, np.linspace(0, 360, 10))

    assert_equal(len(angles), 10)
Esempio n. 17
0
def get_orientation(image, debug=False):
    bin_image = (image > threshold_li(image)) * 1
    dilated = scipy.ndimage.morphology.binary_dilation(bin_image,
                                                       iterations=30)
    labeled, num_regions = mh.label(dilated)
    sizes = mh.labeled.labeled_size(labeled)
    mh.labeled.labeled_size(labeled)

    if len(sizes) > 2:
        too_small = np.where(sizes < np.flip(np.sort(sizes))[1])
        labeled = mh.labeled.remove_regions(labeled, too_small)
        labeled = (labeled / np.max(np.unique(labeled))).astype(np.int)
    skeleton = skeletonize(labeled)
    h, theta, d = hough_line(skeleton)
    origin = np.array((0, skeleton.shape[1]))
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
        y0, y1 = (dist - origin * np.cos(angle)) / np.sin(angle)
    gradient = (y0 - y1) / origin[1]
    if debug == False:
        return math.degrees(np.arctan(gradient))
    elif debug == True:
        f, ax = plt.subplots(figsize=(40, 20))
        plt.imshow(bin_image)
        plt.show()
        f, ax = plt.subplots(figsize=(40, 20))
        plt.imshow(dilated)
        plt.show()
        f, ax = plt.subplots(figsize=(40, 20))
        plt.imshow(skeleton)
        plt.show()
        return math.degrees(np.arctan(gradient))
Esempio n. 18
0
def scan_callback(msg):

    global ranges,image,h,theta,d,imagesize,delta_angle,min_angle,horizion_num
    
    ranges = np.array(msg.ranges) * 0.9998476951563913
    min_angle = msg.angle_min
    max_angle = msg.angle_max
    delta_angle = msg.angle_increment
    horizion_num = len(ranges)

    # Map_size = np.max(ranges[np.logical_not(np.isinf(ranges))])
    
    imagesize = int(round(Map_size/resolution))
    image = np.zeros((2*imagesize, 2*imagesize))  #背景图为一片黑

    # 画图
    for i in range( 0, len(ranges) ):
        x = ranges[i] * math.cos( min_angle + i * delta_angle )
        y = -ranges[i] * math.sin( min_angle + i * delta_angle )
        if not np.isinf(x) and (not np.isinf(y)):
            if math.fabs(x) < Map_size - 0.1 and math.fabs(y) < Map_size - 0.1 :
                image[-int(round(x/resolution)) + imagesize ,-int(round(y/resolution)) + imagesize] = 255



    # 进行hough线变换
    h, theta, d = st.hough_line(image)
Esempio n. 19
0
def detect_vertical_lines(data,
                          max_deviation_from_vertical=1,
                          row_begin=100,
                          row_end=-100,
                          min_distance=50):
    if "cropped_original" in data:
        image = data["cropped_original"]
    else:
        image = data["original"]

    image = np.gradient(image)[1]  #Vertical component of gradient
    image = image[row_begin:row_end, :]

    h, theta, d = hough_line(image)  #hough transform
    h[:, :90 -
      max_deviation_from_vertical] = 0  #Mask out areas that relate to non vertical lines
    h[:, 90 + max_deviation_from_vertical:] = 0

    h = np.log(1 + h)  #log scale for better visibility

    fx = []
    for _, angle, dist in zip(
            *hough_line_peaks(h, theta, d, min_distance=min_distance)):
        y0 = (dist) / np.sin(angle)  #y for x = 0
        y1 = (dist - image.shape[1] * np.cos(angle)) / np.sin(
            angle)  #y for x = image.shape[1]
        intercept = y0
        slope = (y1 - y0) / float(image.shape[1])
        fx.append([slope, intercept])

    data["houghlines"] = fx
    #ax.plot(x, intercept+x*slope,  '-r')
    return data
Esempio n. 20
0
def test1():
    X, y = LR.make_data()
    image = scatter2image(X, y)
    accumulator, thetas, rhos = transform.hough_line(
        image)  # hough_line(image)
    show_transform(accumulator, 'hough_transform')
    show_line(image, accumulator, thetas, rhos, 50, 'hough_line')
Esempio n. 21
0
def jet_detect(img, calibratemean, calibratestd, x):
    mean, std = image_stats(img)

    # compare mean & calibratemean
    if (mean < calibratemean * 0.8) or (mean > calibratemean * 1.2):
        print('no jet')

    for c in range(x):
        try:
            # binary = (img / (mean + 2 * std * 0.90 ** c)).astype(np.uint8)
            # binary = cv2.adaptiveThreshold(img, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 50, 2)
            # binary = cv2.bitwise_not(imagem)
            # lines = cv2.HoughLines(binary, 1, np.radians(0.25), 30)
            # rho, theta = lines[0][0]

            binary = canny(img,
                           sigma=2,
                           use_quantiles=True,
                           low_threshold=0.9,
                           high_threshold=0.99)
            fig, (ax1, ax2) = plt.subplots(nrows=1,
                                           ncols=2,
                                           figsize=(8, 3),
                                           sharex=True,
                                           sharey=True)
            ax1.imshow(img, cmap=plt.cm.gray)
            ax2.imshow(binary, cmap=plt.cm.gray)
            plt.show()

            h, theta, d = hough_line(binary)
            accum, angles, ds = hough_line_peaks(h, theta, d, min_distance=2)
            print(accum)
            print(angles)
            print(ds)

            # if (theta > math.radians(45)) and (theta < math.radians(135)):
            # print('invalid jet')
            # if (get_jet_width(img, rho, theta) * pxsize > 0.1):
            #    print('invalid jet')
            # for rho, theta in lines[0]:
            # jetValid = true
            # if (theta > math.radians(70)):
            #     jetValid = False
# width = get_jet_width(binary, rho, theta)
# if (width > [x]):
#     jetValid = False
# if (jetValid == False):
# reject jet
        except Exception:
            print(c)
            continue
        else:
            # show binary image
            # cv2.imshow('binary', binary)
            # cv2.waitKey(0)
            # cv2.destroyAllWindows()
            # return rho, theta
            # return 0, 0
            return angles[0], ds[0]
    raise ValueError('unable to detect jet')
Esempio n. 22
0
def isolate_board(img):
    """
    INPUT:
        img -- Image containing a Sudoku board
    OUTPUT:
        img -- Image cropped to contain only the Sudoku board
    """
    edges = canny(img, sigma=1).astype(np.uint8)

    test_angles = np.linspace(-np.pi / 2, np.pi / 2, 360)  # Sweep -90° to +90°
    h, theta, d = hough_line(edges, theta=test_angles)

    top = img.shape[0] + 1
    bottom = -1
    left = img.shape[1] + 1
    right = -1

    # Horizontal Line: theta ~= pi/2
    # Vertical Line: theta ~= 0
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
        # If line is Vertical
        if -45 < np.rad2deg(angle) < 45:
            # If line is furthest Left
            if dist < left: left = dist
            # If line is furthest Right
            if dist > right: right = dist
        else:  # Line is Horizontal
            # If line is furthest Down
            if dist > bottom: bottom = dist
            # If line is furthest Up
            if dist < top: top = dist

    return img[int(top):int(bottom), int(left):int(right)]
Esempio n. 23
0
def estimate_corner_lines(corner_region, corner_type, image_size):
    '''
    Estimate the line parameters for the edges of the given marker corner

    Inputs:
        - corner_region: regionprops for the given corner of the marker
        - corner_type: either 'BL' for bottom-left or 'TR' for top-right
        - image_size: tuple of original camera image's size
    Return:
        A list of length 2 holding the line parameters of horizontal and vertical edges of the marker
    '''
    corner_miny, corner_minx, corner_maxy, corner_maxx = corner_region.bbox

    # Pad the corner image to match the size of the entire image
    corner_image = util.pad(corner_region.intensity_image,
                            ((corner_miny, image_size[0] - corner_maxy),
                             (corner_minx, image_size[1] - corner_maxx)),
                            mode='constant',
                            constant_values=0)

    # Perform edge detection and Hough line transform
    corner_edges = feature.canny(corner_image, sigma=0)
    corner_hough = transform.hough_line(corner_edges,
                                        theta=np.linspace(
                                            -np.pi / 2, np.pi / 2, 360))
    corner_hough_peaks = list(
        zip(*transform.hough_line_peaks(
            *corner_hough, min_angle=45, num_peaks=2)))

    corner_lines = []

    def is_horizontal(peak):
        return abs(np.rad2deg(peak[1])) > 75

    def is_vertical(peak):
        return abs(np.rad2deg(peak[1])) <= 15

    # Categorized the detected lines as vertical or horizontal
    horizontal_peaks = list(filter(is_horizontal, corner_hough_peaks))
    vertical_peaks = list(filter(is_vertical, corner_hough_peaks))

    # Add the first estimated horizontal line
    if horizontal_peaks:
        corner_lines.append(horizontal_peaks[0])
    else:
        # Create a horizontal line from the bottom edge (if BL type) or top edge (if TR type)
        angle = np.pi / 2
        dist = corner_maxy if corner_type == 'BL' else corner_miny
        corner_lines.append((0, angle, dist))

    # Add the first estimated vertical line
    if vertical_peaks:
        corner_lines.append(vertical_peaks[0])
    else:
        # Create a vertical line from the left edge (if BL type) or right edge (if TR type)
        angle = 0.001
        dist = corner_minx if corner_type == 'BL' else corner_maxx
        corner_lines.append((0, angle, dist))

    return corner_lines
Esempio n. 24
0
def detect_line_p(route):
    line_img = cv2.imread(route)
    line_img = np.copy(line_img)
    line_img_copy = cv2.cvtColor(line_img, cv2.COLOR_BGR2RGB)
    line_img_gray = cv2.cvtColor(line_img_copy, cv2.COLOR_RGB2GRAY)

    # detect edge
    line_edges = cv2.Canny(line_img_gray, 100, 120)
    cv2.imshow("edge", line_edges)
    # hough transform
    h, angles, d = st.hough_line(line_edges)
    lines = cv2.HoughLines(line_edges, 1, np.pi / 180, 180)

    img_h = np.copy(line_img_copy)

    for line in lines:
        rho, theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))
        cv2.line(img_h, (x1, y1), (x2, y2), (0, 255, 0), 2)
    return np.log(1 + h), img_h
Esempio n. 25
0
 def calculate(self, image: np.ndarray, disk_size: int=9,
               mean_threshold: int=100, min_object_size: int=750) -> float:
     # Find edges that have a strong vertical direction
     vertical_edges = sobel_v(image)
     # Separate out the areas where there is a large amount of vertically-oriented stuff
     segmentation = self._segment_edge_areas(vertical_edges, disk_size, mean_threshold, min_object_size)
     # Draw a line that follows the center of the segments at each point, which should be roughly vertical
     # We should expect this to give us four approximately-vertical lines, possibly with many gaps in
     # each line
     skeletons = skeletonize(segmentation)
     # Use the Hough transform to get the closest lines that approximate those four lines
     hough = transform.hough_line(skeletons, np.arange(-constants.FIFTEEN_DEGREES_IN_RADIANS,
                                                       constants.FIFTEEN_DEGREES_IN_RADIANS,
                                                       0.0001))
     # Create a list of the angles (in radians) of all of the lines the Hough transform produced, with 0.0
     # being completely vertical
     # These angles correspond to the angles of the four sides of the channels, which we need to
     # correct for
     angles = [angle for _, angle, dist in zip(*transform.hough_line_peaks(*hough))]
     if not angles:
         raise ValueError("Image rotation could not be calculated. Check the images to see if they're weird.")
     else:
         # Get the average angle and convert it to degrees
         offset = sum(angles) / len(angles) * 180.0 / math.pi
         if offset > constants.ACCEPTABLE_SKEW_THRESHOLD:
             log.warn("Image is heavily skewed. Check that the images are valid.")
         return offset
Esempio n. 26
0
def _determine_rotation_offset(image):
    """
    Finds rotational skew so that the sides of the central trench are (nearly) perfectly vertical.
    :param image:   raw image data in a 2D (i.e. grayscale) numpy array
    :type image:    np.array()
    """
    segmentation = create_vertical_segments(image)
    # Draw a line that follows the center of the segments at each point, which should be roughly vertical
    # We should expect this to give us four approximately-vertical lines, possibly with many gaps in each line
    skeletons = skeletonize(segmentation)
    # Use the Hough transform to get the closest lines that approximate those four lines
    hough = transform.hough_line(skeletons, np.arange(-Constants.FIFTEEN_DEGREES_IN_RADIANS,
                                                      Constants.FIFTEEN_DEGREES_IN_RADIANS,
                                                      0.0001))
    # Create a list of the angles (in radians) of all of the lines the Hough transform produced, with 0.0 being
    # completely vertical
    # These angles correspond to the angles of the four sides of the channels, which we need to correct for
    angles = [angle for _, angle, dist in zip(*transform.hough_line_peaks(*hough))]
    if not angles:
        log.warn("Image skew could not be calculated. The image is probably invalid.")
        return 0.0
    else:
        # Get the average angle and convert it to degrees
        offset = sum(angles) / len(angles) * 180.0 / math.pi
        if offset > Constants.ACCEPTABLE_SKEW_THRESHOLD:
            log.warn("Image is heavily skewed. Check that the images are valid.")
        return offset
Esempio n. 27
0
def determine_skew(img):
    edges = canny(img, sigma=3.0)
    h, a, d = hough_line(edges)
    _, ap, _ = hough_line_peaks(h, a, d, num_peaks=10)

    absolute_deviations = [np.abs(np.pi / 4 - np.abs(k)) for k in ap]
    average_deviation = np.mean(np.rad2deg(absolute_deviations))
    ap_deg = [np.rad2deg(x) for x in ap]

    bin_0_45 = []
    bin_45_90 = []
    bin_0_45n = []
    bin_45_90n = []

    for ang in ap_deg:

        deviation_sum = int(90 - ang + average_deviation)
        if compare_sum(deviation_sum):
            bin_45_90.append(ang)
            continue

        deviation_sum = int(ang + average_deviation)
        if compare_sum(deviation_sum):
            bin_0_45.append(ang)
            continue

        deviation_sum = int(-ang + average_deviation)
        if compare_sum(deviation_sum):
            bin_0_45n.append(ang)
            continue

        deviation_sum = int(90 + ang + average_deviation)
        if compare_sum(deviation_sum):
            bin_45_90n.append(ang)

    angles = [bin_0_45, bin_45_90, bin_0_45n, bin_45_90n]
    lmax = 0

    for j in range(len(angles)):
        l = len(angles[j])
        if l > lmax:
            lmax = l
            maxi = j

    if lmax:
        ans_arr = get_max_freq_elem(angles[maxi])
        ans_res = np.mean(ans_arr)

    else:
        ans_arr = get_max_freq_elem(ap_deg)
        ans_res = np.mean(ans_arr)

    data = {
        "Average Deviation from pi/4": average_deviation,
        "Estimated Angle": ans_res,
        "Angle bins": angles
    }

    return data
Esempio n. 28
0
def manualTrack(image, bckMean, idx=-1):
    contrast = 17.
    radius = 30.

    plt.clf()
    stopTrack = False
    plt.imshow(image, cmap='gray')
    rows, cols = image.shape
    plt.title('Click on the manipulator; Frame: %i' % idx)
    plt.draw()
    plt.pause(0.001)
    manip = np.asarray(plt.ginput(1, timeout=0))

    if len(manip) == 0:
        y0 = np.NaN
        y1 = np.NaN
        thetaInit = np.NaN
        d = np.NaN
        stopTrack = True
        return y0, y1, thetaInit, d, stopTrack
    else:

        roiRow, roiCol = circle(manip[0, 1], manip[0, 0], radius)
        # make sure the roi is not too big
        roiRow[roiRow >= rows] = rows - 1
        roiCol[roiCol >= cols] = cols - 1
        #
        imROI = 255 * np.ones_like(image)
        imROI[roiRow, roiCol] = image[roiRow, roiCol]

        thresh = cv2.threshold(image[roiRow, roiCol], 0, 255,
                               cv2.THRESH_BINARY + cv2.THRESH_OTSU)[0]
        # BW = imROI < (bckMean - contrast)
        BW = imROI < thresh

        # BW = dil_skel(BW)
        h, theta, d = hough_line(BW)
        try:
            _, thetaInit, d = hough_line_peaks(h,
                                               theta,
                                               d,
                                               min_distance=1,
                                               num_peaks=1)
        except:
            y0 = np.NaN
            y1 = np.NaN
            thetaInit = np.NaN
            d = np.NaN
            stopTrack = True
            return y0, y1, thetaInit, d, stopTrack

        y0 = (d - 0 * np.cos(thetaInit)) / np.sin(thetaInit)
        y1 = (d - cols * np.cos(thetaInit)) / np.sin(thetaInit)
        if len(y0) == 0:
            stopTrack = True

        plt.clf()
        thetaInit = np.mean(thetaInit)
        return y0, y1, thetaInit, d, stopTrack
Esempio n. 29
0
def radonhoughcomp(Data):

    ###############################################################################
    #                         Hough and Radon Transforms
    ###############################################################################

    thresh = threshold_otsu(Data)
    binary = Data > thresh
    h, theta, d = hough_line(binary)
    sinogram = radon(binary, circle=False)

    ###############################################################################
    #                                 Plots
    ###############################################################################

    fig, axes3 = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
    ax3 = axes3.ravel()

    ax3[0] = plt.subplot(2, 2, 1)
    ax3[1] = plt.subplot(2, 2, 2)
    ax3[2] = plt.subplot(2, 2, 3)
    ax3[3] = plt.subplot(2, 2, 4)

    ax3[0].imshow(Data, cmap=plt.cm.gray, aspect='auto')
    ax3[0].set_title("Original")
    #ax3[0].set_ylim([200,0])
    ax3[0].axis('off')

    ax3[1].imshow(binary, cmap=plt.cm.gray, aspect='auto')
    row1, col1 = binary.shape
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - col1 * np.cos(angle)) / np.sin(angle)
        ax3[1].plot((0, col1), (y0, y1), '-r')
        ax3[1].axis((0, col1, row1, 0))
        ax3[1].set_title('After Transform')
        #ax3[1].set_ylim([200,0])
        ax3[1].axis('off')

    ax3[2].imshow(sinogram,
                  cmap=plt.cm.gray,
                  extent=(0, 180, 0, sinogram.shape[0]),
                  aspect='auto')
    ax3[2].set_title("Radon transform")
    ax3[2].set_xlabel("Angles (degrees)")
    ax3[2].set_ylabel("Distance (pixels)")

    ax3[3].imshow(
        np.log(1 + h),
        extent=[np.rad2deg(theta[-1]),
                np.rad2deg(theta[0]), 0, d[0] * -1],
        cmap=plt.cm.gray,
        aspect='auto')
    ax3[3].set_title('Hough transform')
    ax3[3].set_xlabel('Angles (degrees)')
    ax3[3].set_ylabel('Distance (pixels)')

    plt.savefig('radonhoughcomp.png')
    plt.show()
Esempio n. 30
0
    def execute(self, _image):
        # 避免计算耗时过长
        resized_img = resize_with_long_side(_image, 1024)
        gray_image = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY)
        edges = canny(gray_image, sigma=self.sigma)
        h, a, d = hough_line(edges)
        _, candidate_angle_bins, _ = hough_line_peaks(h,
                                                      a,
                                                      d,
                                                      num_peaks=self.num_peaks)
        if len(candidate_angle_bins) == 0:
            return _image
        absolute_deviations = [
            calculate_deviation(m_angle) for m_angle in candidate_angle_bins
        ]
        average_deviation = np.mean(np.rad2deg(absolute_deviations))
        angle_degrees = [np.rad2deg(x) for x in candidate_angle_bins]

        bin_0_45 = []
        bin_45_90 = []
        bin_0_45n = []
        bin_45_90n = []
        low_bound_of_angle = 44
        high_bound_of_angle = 46
        for m_angle_degree in angle_degrees:
            for m_bin, m_new_angle_degree in zip(
                [bin_45_90, bin_0_45, bin_0_45n, bin_45_90n], [
                    90 - m_angle_degree, m_angle_degree, -m_angle_degree,
                    90 + m_angle_degree
                ]):
                deviation_sum = int(m_new_angle_degree + average_deviation)
                if low_bound_of_angle <= deviation_sum <= high_bound_of_angle:
                    m_bin.append(m_angle_degree)

        candidate_angle_bins = [bin_0_45, bin_45_90, bin_0_45n, bin_45_90n]
        selected_angle_bin = 0
        selected_angle_bin_length = len(candidate_angle_bins[0])

        for j in range(1, len(candidate_angle_bins)):
            m_len_angles = len(candidate_angle_bins[j])
            if m_len_angles > selected_angle_bin_length:
                selected_angle_bin_length = m_len_angles
                selected_angle_bin = j

        if selected_angle_bin_length:
            candidate_degrees = get_max_frequency_element(
                candidate_angle_bins[selected_angle_bin])
            mean_degree = np.mean(candidate_degrees)
        else:
            candidate_degrees = get_max_frequency_element(angle_degrees)
            mean_degree = np.mean(candidate_degrees)
        target_to_rotate_angle = mean_degree
        if 0 <= mean_degree <= 90:
            target_to_rotate_angle = mean_degree - 90
        if -90 <= mean_degree < 0:
            target_to_rotate_angle = 90 + mean_degree

        rotated_image, _ = rotate_degree_img(_image, -target_to_rotate_angle)
        return rotated_image
Esempio n. 31
0
def test_hough_line_peaks_num():
    img = np.zeros((100, 100), dtype=bool)
    img[:, 30] = True
    img[:, 40] = True
    hspace, angles, dists = transform.hough_line(img)
    assert len(transform.hough_line_peaks(hspace, angles, dists,
                                          min_distance=0, min_angle=0,
                                          num_peaks=1)[0]) == 1
def applyHough(nAngles, img):
    # hough
    # Classic straight-line Hough transform
    # Set a precision of 0.5 degree.
    tested_angles = np.linspace(-np.pi / 2, np.pi / 2, nAngles)

    h, theta, d = hough_line(img, theta=tested_angles)
    return(h, theta, d)
def test_hough_line_peaks_num():
    img = np.zeros((100, 100), dtype=np.bool_)
    img[:, 30] = True
    img[:, 40] = True
    hspace, angles, dists = tf.hough_line(img)
    with expected_warnings(['`background`']):
        assert len(tf.hough_line_peaks(hspace, angles, dists, min_distance=0,
                                       min_angle=0, num_peaks=1)[0]) == 1
def roll_from_disp(disp):
    h, theta, d = hough_line(
        (cfg['test_disp'][0] < disp) & (disp < cfg['test_disp'][1]),
        theta=linspace(deg2rad(90 - 30), deg2rad(90 + 30), 250))
    _, angles, dists = hough_line_peaks(h, theta, d, num_peaks=1)
    if len(angles) == 0:
        angles = [NaN]
    return 90 - rad2deg(angles[0])
Esempio n. 35
0
    def rotate_images(self):
        # https://stackoverflow.com/a/56675787
        # https: // scikit - image.org / docs / dev / auto_examples / edges / plot_line_hough_transform.html
        image_count = len(self.images)
        current_image = 1
        for image in self.images:
            image_path = f'./data/01_raw/{image}'
            # Load Image
            loaded_image = cv2.imread(image_path)
            # Convert to grayscale
            gray = cv2.cvtColor(loaded_image, cv2.COLOR_BGR2GRAY)
            # Convert non-black pixels to pure white. Creates white box (image) on black background
            thresh = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)[1]
            # Smooth
            thresh = cv2.erode(thresh, None, iterations=2)
            thresh = cv2.dilate(thresh, None, iterations=4)
            # Resize
            thresh = cv2.resize(thresh, (0, 0), fx=0.25, fy=0.25)
            # Find edges of white box
            edges = cv2.Canny(thresh, 100, 200)
            img = edges
            row_length = len(img[0]) - 1

            # Draw a horizontal line to use to create an angle with the satellite image border
            width, height = img.shape
            thickness = 5
            y_offset = int(ceil(height / 2))
            for x in range(1, thickness):
                rr, cc = line(x + y_offset, 1, x + y_offset, row_length)
                img[rr, cc] = 1

            # Crop image (only working with top half)
            y = 0
            x = 0
            h = height - int(ceil(height / 2))
            w = width
            crop = img[y:y + h, x:x + w]

            # Perform Hough Transformation to detect lines
            hspace, angles, distances = hough_line(crop)

            # Find angle
            angle = []
            for _, a, distances in zip(
                    *hough_line_peaks(hspace, angles, distances)):
                angle.append(a)
            # Obtain angle for each line
            angles = [a * 180 / np.pi for a in angle]

            # Rotate image to make it line up square
            rotated = imutils.rotate(loaded_image, angles[0])

            # Save image
            save_path = f'./data/02_preprocessing/{image}'
            cv2.imwrite(save_path, rotated)

            print(f'Fixed image rotation: \t {current_image}/{image_count}')
            current_image += 1
Esempio n. 36
0
def test_hough_line_peaks_dist():
    img = np.zeros((100, 100), dtype=np.bool_)
    img[:, 30] = True
    img[:, 40] = True
    hspace, angles, dists = tf.hough_line(img)
    assert len(tf.hough_line_peaks(hspace, angles, dists,
                                   min_distance=5)[0]) == 2
    assert len(tf.hough_line_peaks(hspace, angles, dists,
                                       min_distance=15)[0]) == 1
Esempio n. 37
0
def test_hough_line_peaks_angle():
    img = np.zeros((100, 100), dtype=np.bool_)
    img[:, 0] = True
    img[0, :] = True

    hspace, angles, dists = tf.hough_line(img)
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_angle=45)[0]) == 2
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_angle=90)[0]) == 1

    theta = np.linspace(0, np.pi, 100)
    hspace, angles, dists = tf.hough_line(img, theta)
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_angle=45)[0]) == 2
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_angle=90)[0]) == 1

    theta = np.linspace(np.pi / 3, 4. / 3 * np.pi, 100)
    hspace, angles, dists = tf.hough_line(img, theta)
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_angle=45)[0]) == 2
    assert len(tf.hough_line_peaks(hspace, angles, dists, min_angle=90)[0]) == 1
Esempio n. 38
0
def test_hough_line_peaks_dist():
    img = np.zeros((100, 100), dtype=np.bool_)
    img[:, 30] = True
    img[:, 40] = True
    hspace, angles, dists = transform.hough_line(img)
    assert len(transform.hough_line_peaks(hspace, angles, dists,
                                          min_distance=5)[0]) == 2
    assert len(transform.hough_line_peaks(hspace, angles, dists,
                                          min_distance=15)[0]) == 1
Esempio n. 39
0
def skew_angle_hough_transform(image):
    edges = canny(image)
    tested_angles = np.deg2rad(np.arange(0.1, 180.0))
    h, theta, d = hough_line(edges, theta=tested_angles)
    accum, angles, dists = hough_line_peaks(h, theta, d)
    most_common_angle = mode(np.around(angles, decimals=2))[0]
    skew_angle = np.rad2deg(most_common_angle - np.pi / 2)
    img_rotated = rotate(image, skew_angle, resize=True, mode='edge')
    return img_rotated
Esempio n. 40
0
def constructCorridorsByHT(**kwargs):
    "Construct corridors based on the lines extracted by Hough transform"
    xyz_min = kwargs['xyz_min']
    xyz_max = kwargs['xyz_max']
    pts_1 = kwargs['points']
    cellsize = kwargs['cellsize']
    threshold_line = kwargs['HF_peaks_threshold']
    maxdist = kwargs['maxdist']
    threshold_discontinuity = kwargs['discontinuity_threshold']
    buffer_size = kwargs['buffer_size']
    #
    a = {'min_xyz':xyz_min, 'max_xyz':xyz_max, 'pts':pts_1, 'cellsize':1}
    img_xy = pointsToRaster(**a) # rtn
    # Hough transform
    tested_angles = np.linspace(0, 2*np.pi, 360)
    h, theta, d = hough_line(img_xy, theta = tested_angles)
    hough_peaks = hough_line_peaks(h, theta, d, threshold=threshold_line)
    # filter the short lines based on hough peaks and raster image img_xy
    a = {'img': img_xy, 'peaks':zip(*hough_peaks), 'maxdist':maxdist}
    img_base = houghToRasterByCellID(**a) # rtn
    # calcualte the length of lines. the number of cells on lines
    a = {'img': img_base, 'peaks':zip(*hough_peaks), 'maxdist':maxdist}
    hl = recordHoughLines(**a) # rtn hough-lines
    hl = np.array(hl)
    # judge the extent of a line discontinuity.
    a = {'hough-lines': hl, 'maxdist': 1, 'img_base': img_base}
    lid = evaluateLinesDiscontinuity(**a) # rtn discontinuity of lines
    lid = np.array(lid)
    # remove the lines with long discontinuity
    idx = np.argwhere(lid < threshold_discontinuity)
    hltemp = hl[idx.ravel()]
    # generate new raster image with continuous lines
    a = {'img':img_xy, 'HLine':hltemp}
    img_temp = generateCorridorByLine(**a) # rtn image with continuous lines
    # construct corridors based on img_temp and buffer operation
    line_params = []
    for h in hltemp:
        line_params.append(h.coord)
    a = {'img': img_base, 'peaks':line_params, 'maxdist':buffer_size}
    img_corridors = generateBuffer(**a) # rtn corridors
    # generate image buffer array
    lineBufferArray = [] # rtn the collection of corridors
    for h in hltemp:
        a = {'img': img_base, 'peaks':[h.coord], 'maxdist':buffer_size}
        img = generateBuffer(**a)
        lineBufferArray.append(img)
    #
    rtn = {'img_xy': img_xy,
           'img_base': img_base,
           'hough_lines': hl,
           'discontinuity': lid,
           'img_lines': img_temp,
           'img_corridors': img_corridors,
           'corridors': lineBufferArray
          }
    return rtn
Esempio n. 41
0
def deskew(image):
    edges = canny(image, low_threshold=50, high_threshold=150, sigma=2)
    harris = corner_harris(edges)
    tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360)
    h, theta, d = hough_line(harris, theta=tested_angles)
    out, angles, d = hough_line_peaks(h, theta, d)
    rotation_number = np.average(np.degrees(angles))
    if rotation_number < 45 and rotation_number != 0:
        rotation_number += 90
    return rotation_number
Esempio n. 42
0
def detect_lines(img):

	# skeletonized_image = skeletonize(img)
	# skeletonized_image = canny(img)

	skeletonized_image = img



	tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 360)
	h, theta, d = hough_line(skeletonized_image, theta=tested_angles)

	# fig, axes = plt.subplots(figsize=(15, 6))
	# axes.imshow(skeletonized_image, cmap=cm.gray)

	origin = np.array((0, skeletonized_image.shape[1]-1))
	peaks = zip(*hough_line_peaks(h, theta, d, threshold=0.3*np.max(h)))
	

	linesArr = []
	for _, angle, dist in peaks:
			if abs(90 - abs(np.rad2deg(angle)) > 3): # if angle is not close to 90/-90 degress neglect it (we detect horizontal lines only)
					continue
			if(abs(np.rad2deg(angle)) > 0.5): #if angle not equal zero
					y0, y1 = (dist - origin * np.cos(angle)) / np.sin(angle)
			else: #if angle zero
					y0 = 0
					y1 = skeletonized_image.shape[0] - 1
					origin[0] = dist
					origin[1] = dist
			point0 = [origin[0], y0]
			point1 = [origin[1], y1]
			# print(y0, y1)
			if(len([index for index,value in enumerate(linesArr) \
					if \
							( abs(value[0][1] - y0) < 5 and abs(value[1][1] - y1) < 5 ) \
							or ( value[0][1] > y0 and  value[1][1] < y1 ) \
							or ( value[0][1] < y0 and  value[1][1] > y1 ) \
									]) == 0): #If this line nearly approaches or intersects a previous line, don't take it
					linesArr.append([point0, point1])
			else:
					continue
			# axes.plot(origin, (y0, y1), '-r')
			origin[0] = 0
			origin[1] = skeletonized_image.shape[1] - 1

	# axes.set_xlim(origin)
	# axes.set_ylim((skeletonized_image.shape[0], 0))
	# axes.set_axis_off()
	# axes.set_title('Detected lines')
	# plt.tight_layout()
	# plt.show()

	linesArr.sort(key=line_sort_key) #sort by the y component of the first point in each line
	return np.array(linesArr)
Esempio n. 43
0
def align_with_boarder(image, sigma=1):

    edges = ft.canny(image, sigma=sigma)
    # edges = abs(fil.sobel_v(image))

    h, theta, d = tf.hough_line(edges)

    a, rot_angle, c = tf.hough_line_peaks(h, theta, d, min_distance=0)
    image = rotate(image, np.rad2deg(rot_angle[0]))

    return image
Esempio n. 44
0
 def test_ideal_tfr(self):
     """Test if the ideal TFR can be found using the instantaneous frequency
     laws."""
     _, iflaw1 = fmlin(128, 0.0, 0.2)
     _, iflaw2 = fmlin(128, 0.3, 0.5)
     iflaws = np.c_[iflaw1, iflaw2].T
     tfr, _, _ = pproc.ideal_tfr(iflaws)
     tfr[tfr == 1] = 255
     tfr = tfr.astype(np.uint8)
     hspace, angles, dists = hough_line(tfr)
     for x in hough_line_peaks(hspace, angles, dists):
         self.assertEqual(len(x), 2)
def test_hough_line_peaks():
    img = np.zeros((100, 150), dtype=int)
    rr, cc = line(60, 130, 80, 10)
    img[rr, cc] = 1

    out, angles, d = tf.hough_line(img)

    out, theta, dist = tf.hough_line_peaks(out, angles, d)

    assert_equal(len(dist), 1)
    assert_almost_equal(dist[0], 80.723, 1)
    assert_almost_equal(theta[0], 1.41, 1)
Esempio n. 46
0
def houghSides(bottle, edges, threshold, left):
    h, theta, d = hough_line(edges)
    accum = zip(*hough_line_peaks(h, theta, d))
    sortedAccum = sorted(accum, key=getKey, reverse=True)
    sortedAccumR = [sa for sa in sortedAccum if sa[2] > 200]
    sortedAccumL = [sa for sa in sortedAccum if sa[2] <= 200]

    if left:
        hpeak, angle, dist = sortedAccumL[0]
    else:
        hpeak, angle, dist in sortedAccumR[0]

    return (1, dist, angle)
def test_hough_line_peaks_ordered():
    # Regression test per PR #1421
    testim = np.zeros((256, 64), dtype=np.bool)

    testim[50:100, 20] = True
    testim[85:200, 25] = True
    testim[15:35, 50] = True
    testim[1:-1, 58] = True

    hough_space, angles, dists = tf.hough_line(testim)

    hspace, _, _ = tf.hough_line_peaks(hough_space, angles, dists)
    assert hspace[0] > hspace[1]
def check_door(image, Pw_corners, Pi_corners, door_edges,
               required_matching_ratio=0.7, verbose=0):
    """Check if door is closed."""
    results = {}

    image_sobel, image_edges = detect_edges(image)

    # Detect lines with Hough transform
    hough_accumulator, angles, dists = hough_line(image_edges)
    hspace, angles, dists = hough_line_peaks(
        hough_accumulator, angles, dists, threshold=150.0)

    # Estimate camera transformation by minimizing the distance between
    # calibration points
    params = optimize_transform(camera_params, Pw_corners, Pi_corners)
    if verbose >= 1:
        print("Parameters: %s" % np.round(params, 3))
    cam2world = transform_from(matrix_from_euler_xyz(params[:3]), params[3:6])
    kappa = params[-1]

    W2I = partial(world2image, cam2world=cam2world, kappa=kappa,
                  **camera_params)

    # Get edge pixels in vicinity of lines
    Pi_line_points = check_edge_is_on_line(image_edges, angles, dists)

    if len(Pi_line_points) == 0:
        if verbose >= 1:
            print("No lines detected, assume that door is closed")
        door_closed = True
    else:
        # Check how good the edges of the door projected to the image match
        # detected edge pixels that correspond to lines
        matchings = [check_line_is_edge(edge, Pi_line_points, cam2world, kappa,
                                        camera_params) for edge in door_edges]
        results["door_edges_in_image"] = [m[0] for m in matchings]
        ratios = np.array([m[1] for m in matchings])

        if verbose >= 1:
            print(("Matching ratios: " + ", ".join(["%.2f"] * len(ratios)))
                % tuple(100 * ratios))

        door_closed = np.any(ratios > required_matching_ratio)

    results["cam2world"] = cam2world
    results["Pi_line_points"] = Pi_line_points
    results["image_sobel"] = image_sobel
    results["image_edges"] = image_edges
    results["lines"] = (angles, dists)

    return door_closed, W2I, results
def test_hough_line():
    # Generate a test image
    img = np.zeros((100, 150), dtype=int)
    rr, cc = line(60, 130, 80, 10)
    img[rr, cc] = 1

    out, angles, d = tf.hough_line(img)

    y, x = np.where(out == out.max())
    dist = d[y[0]]
    theta = angles[x[0]]

    assert_almost_equal(dist, 80.723, 1)
    assert_almost_equal(theta, 1.41, 1)
Esempio n. 50
0
def test_hough():
    # Generate a test image
    img = np.zeros((100, 100), dtype=int)
    for i in range(25, 75):
        img[100 - i, i] = 1

    out, angles, d = tf.hough_line(img)

    y, x = np.where(out == out.max())
    dist = d[y[0]]
    theta = angles[x[0]]

    assert_equal(dist > 70, dist < 72)
    assert_equal(theta > 0.78, theta < 0.79)
Esempio n. 51
0
def findLines(img):
    r = img[..., 0]
    g = img[..., 1]
    b = img[..., 2]

    # Add all edges together
    edges = findEdges(r) + findEdges(g) + findEdges(b)

    # Dilate to make the edges thicker
    dilatedEdges = dilation(edges)

    # To a Hough transform to find the lines
    h, theta, d = hough_line(dilatedEdges)

    return edges, dilatedEdges, (h, theta, d)
Esempio n. 52
0
def hough_transform(binary_image, theta=np.linspace(0, np.pi / 2, 3, endpoint=True)):
    """Compute a Hough Transform on a binary image to detect straight lines

    Args:
        binary_image: 2D image, where 0 is off and 255 is on.

    Returns:
        (ndarray, array, array): Bins, angles, distances
                 Values of the bins after the Hough Transform, where the value at (i, j)
                 is the number of 'votes' for a straight line with distance[i] perpendicular to the origin
                 and at angle[j]. Also returns the corresponding array of angles and the corresponding array
                 of distances.

    """
    hspace, angles, distances = hough_line(binary_image, theta)
    return hspace.astype(np.float32), angles, distances
Esempio n. 53
0
def test_example():
        
    # Construct toydata
    image = np.zeros((100, 100))
    idx = np.arange(25, 75)
    image[idx[::-1], idx] = 255
    image[idx, idx] = 255
    
    # Classic straight-line Hough transform  
    h, theta, d = hough_line(image)

    # plot
    plt.figure(figsize=(8, 4))

    plt.subplot(131)
    plt.imshow(image, cmap=plt.cm.gray)
    plt.title('Input image')

    plt.subplot(132)
    plt.imshow(np.log(1 + h),
               extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[0]),
                       d[-1], d[0]],
               cmap=plt.cm.gray, aspect=1/1.5)
    plt.title('Hough transform')
    plt.xlabel('Angles (degrees)')
    plt.ylabel('Distance (pixels)')

    plt.subplot(133)
    plt.imshow(image, cmap=plt.cm.gray)
    rows, cols = image.shape
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - cols * np.cos(angle)) / np.sin(angle)
        plt.plot((0, cols), (y0, y1), '-r')
    plt.axis((0, cols, rows, 0))
    plt.title('Detected lines')
def get_features(x):
    features = []
    image = np.array([x])
    image.resize((28, 28))
    binary_image = filters.threshold_adaptive(image, 9)

    angles = np.linspace(0, 1, 8) * PI
    h, _, _ = transform.hough_line(filters.sobel(binary_image), theta=angles)
    h_sum = [
        [sum(row[start:start+5]) for start in xrange(0, 75, 5)]
        for row in zip(*h)
    ]
    features.extend(np.array(h_sum).reshape(1, -1).tolist()[0])

    # moments = measure.moments(binary_image)
    # hu_moments = measure.moments_hu(moments)
    # # reshape: -1 as a dimension size makes the dimension implicit
    # features.extend(moments.reshape((1, -1)).tolist()[0])
    # features.extend(hu_moments.reshape((1, -1)).tolist()[0])

    # h_line, _, _ = transform.hough_line(binary_image)
    # features.extend(np.array(h_line).reshape((1, -1)).tolist()[0])

    return features
                               probabilistic_hough_line)
from skimage.feature import canny
from skimage import data

import matplotlib.pyplot as plt
from matplotlib import cm


# Constructing test image
image = np.zeros((100, 100))
idx = np.arange(25, 75)
image[idx[::-1], idx] = 255
image[idx, idx] = 255

# Classic straight-line Hough transform
h, theta, d = hough_line(image)

# Generating figure 1
fig, axes = plt.subplots(1, 3, figsize=(15, 6))
ax = axes.ravel()

ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[0].set_axis_off()

ax[1].imshow(np.log(1 + h),
             extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]],
             cmap=cm.gray, aspect=1/1.5)
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
def interest_region(image, plot_image = 0):
	# constant 
	th_x = 0.5
	th_y = 0.5
	lid_thickness = 680
	bot_thickness = 230
	side_thickness = 80

	rotation_limit = 2
	angle_u_lim = (90.0 + rotation_limit) / 180.0 * np.pi	
	angle_d_lim = (90.0 - rotation_limit) / 180.0 * np.pi
	
	#Grayscale Conversion and Edge Detection
	if(len(image.shape)>2):
		image = rgb2gray(image)
	img_edge =  canny(image, sigma = 3)
	
	#Image Rotation
	h, theta, d = hough_line(img_edge)
	h_peak, theta_peak, d_peak = hough_line_peaks(h, theta, d)	
	
	theta_rotation = theta[np.where(np.absolute(theta_peak)<=angle_u_lim)]
	theta_rotation = theta_rotation[np.where(np.absolute(theta_rotation)>=angle_d_lim)]

	if(theta_rotation.size):
		rotate_angle = np.pi/2-np.absolute(np.mean(theta_rotation))
		img_rotate = rotate(img_edge,rotate_angle*180)

	#rectangular region selection
	index = np.where(img_rotate>0)

	[hy,b] = np.histogram(index[0],100)
	by = (b[0:(len(b)-1)]+b[1:len(b)])/2
	[hx,b] = np.histogram(index[1],100)
	bx = (b[0:(len(b)-1)]+b[1:len(b)])/2
	
	temp = by[np.where(hy>=th_y*np.mean(hy))]
	if(len(temp)>0):
		bottom = np.amin(temp)
		top = np.amax(temp)	
	else:
		bottom = 450
		top = 1500

	temp = bx[np.where(hx>=th_x*np.mean(hx))]
    
	if(len(temp)>0):		
		left = np.amin(temp)+lid_thickness
		right = np.amax(temp)-bot_thickness
		if (right <= left):
			left = np.amin(temp)+int(lid_thickness/2)
			right = np.amax(temp)+int(lid_thickness/2)
	else:
		left = 1700
		right = 3600-bot_thickness

        bottom = bottom + side_thickness
        top = top - side_thickness
        
        #print [bottom,top,left,right];
	image_rotation = rotate(image,rotate_angle*180)	
	
	interest_image = image_rotation[bottom:top,left:right];
	
	if(plot_image == 1):
		fig, ax = plt.subplots(2,3)
		ax[0,0].imshow(image,cmap=plt.cm.gray)
		ax[0,0].set_title('Original Image')
		ax[0,1].imshow(img_edge,cmap=plt.cm.gray)
		ax[0,1].set_title('Canny Endge Detection')
		ax[0,2].imshow(image, cmap=plt.cm.gray)
		rows, cols = image.shape
		for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
    			y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
    			y1 = (dist - cols * np.cos(angle)) / np.sin(angle)
    			ax[0,2].plot((0, cols), (y0, y1),'-r')
		ax[0,2].axis((0, cols, rows, 0))
		ax[0,2].set_title('Detected lines')
		ax[0,2].set_axis_off()
		ax[1,0].imshow(img_rotate,cmap=plt.cm.gray)
		ax[1,0].set_title('Image Edge after Rotation')
		ax[1,1].scatter(index[1],index[0])
		ax[1,1].set_aspect('equal')
		ax[1,1].set_title('Pixel Axises Histogram')
		divider = make_axes_locatable(ax[1,1])
		axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=ax[1,1])
		axHisty = divider.append_axes("right", 1.2, pad=0.1, sharey=ax[1,1])
		# make some labels invisible
		plt.setp(axHistx.get_xticklabels() + axHisty.get_yticklabels(),visible=False)
		# now determine nice limits by hand:
		axHistx.hist(index[1], bins=bx)
		axHistx.axhline(y=th_y*np.mean(hy),c="red",linewidth=2,zorder=0)
		axHisty.hist(index[0], bins=by, orientation='horizontal')
		axHisty.axvline(x=th_x*np.mean(hx),c="red",linewidth=2,zorder=0)
		#axHistx.axis["bottom"].major_ticklabels.set_visible(False)
		for tl in axHistx.get_xticklabels():
    			tl.set_visible(False)
		axHistx.set_yticks([0, 400, 800, 1200])
		#axHisty.axis["left"].major_ticklabels.set_visible(False)
		for tl in axHisty.get_yticklabels():
    			tl.set_visible(False)
		axHisty.set_xticks([0, 400, 800, 1200])
		ax[1,2].imshow(interest_image,cmap=plt.cm.gray)
		ax[1,2].set_title('Edge Detection')	
		plt.show()
		#"""
	return [interest_image,[bottom,top,left,right],rotate_angle*180]
def main():
    if len(sys.argv) != 2:
        print "ERROR! Correct usage is:"
        print "\tpython test_hough_transform.py [gps_point_collection.dat]"
        return
    
    GRID_SIZE = 500
    results = np.zeros((GRID_SIZE, GRID_SIZE), np.float)
    
    # Load GPS points
    with open(sys.argv[1], "rb") as fin:
        point_collection = cPickle.load(fin)
    
    for pt in point_collection:
        y_ind = math.floor((pt[0] - const.RANGE_SW[0]) / (const.RANGE_NE[0] -const.RANGE_SW[0]) * GRID_SIZE)
        x_ind = math.floor((pt[1] - const.RANGE_NE[1]) / (const.RANGE_SW[1] -const.RANGE_NE[1]) * GRID_SIZE)
        results[x_ind, y_ind] += 1.0
        if results[x_ind, y_ind] >= 64:
            results[x_ind, y_ind] = 63
    results /= np.amax(results)
    
    thresholded_results = np.zeros((GRID_SIZE, GRID_SIZE), np.bool)
    
    THRESHOLD = 0.02
    for i in range(0, GRID_SIZE):
        for j in range(0, GRID_SIZE):
            if results[i,j] >= THRESHOLD:
                thresholded_results[i,j] = 1
            else:
                thresholded_results[i,j] = 0
    box_size = 50
    
    x_ind = random.randint(box_size, GRID_SIZE-box_size)                
    y_ind = random.randint(box_size, GRID_SIZE-box_size)
    
#    x_ind = 217
#    y_ind = 175

    
    test_img = thresholded_results[(x_ind-box_size):(x_ind+box_size),\
                                     (y_ind-box_size):(y_ind+box_size)]
                
    h, theta, d = hough_line(test_img)
#    fig = plt.figure(figsize=(30,16))
#    ax = fig.add_subplot(121, aspect='equal')
#    ax.imshow(test_img, cmap=plt.cm.gray)
#    
#    ax = fig.add_subplot(122)
#    img = skeletonize(test_img)
#    ax.imshow(img, cmap=plt.cm.gray)
#    plt.show()
#    fig = plt.figure(figsize=(30,16))
#    ax = fig.add_subplot(131, aspect='equal')
#    ax.imshow(test_img, cmap=plt.cm.gray)
#    
#    ax = fig.add_subplot(132)
#    ax.imshow(np.log(1+h),
#               extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]],
#               cmap=plt.cm.gray, aspect=1/1.5)
#    ax = fig.add_subplot(133)
#    ax.imshow(test_img, cmap=plt.cm.gray)
#    rows, cols = test_img.shape
#    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
#        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
#        y1 = (dist - cols * np.cos(angle)) / np.sin(angle)
#        ax.plot((0, cols), (y0, y1), '-r')
#    ax.set_xlim([0, cols])
#    ax.set_ylim([rows, 0])
#    plt.show()
    
    print "point at: ", x_ind, y_ind
    coords = [(y_ind-box_size, x_ind-box_size), (y_ind+box_size, x_ind-box_size),\
              (y_ind+box_size, x_ind+box_size), (y_ind-box_size, x_ind+box_size), \
              (y_ind-box_size, x_ind-box_size)]
    
    bound_box = Polygon(coords)
    patch = PolygonPatch(bound_box, fc='none', ec='red')
    fig = plt.figure(figsize=(30,16))
    rows, cols = thresholded_results.shape
    ax = fig.add_subplot(121, aspect='equal')
    ax.imshow(thresholded_results, cmap=plt.cm.gray)
    ax.add_patch(patch)
    ax.set_xlim([0, cols])
    ax.set_ylim([rows, 0])
    
    ax = fig.add_subplot(122)
    ax.imshow(test_img, cmap=plt.cm.gray)
    for _, angle, dist in zip(*hough_line_peaks(h, theta, d, min_distance=8)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - cols * np.cos(angle)) / np.sin(angle)
        ax.plot((0, cols), (y0, y1), '-r')
    rows, cols = test_img.shape
    ax.set_xlim([0, cols])
    ax.set_ylim([rows, 0])
    plt.show()
Esempio n. 58
0
from skimage import exposure, feature

import numpy as np
import matplotlib.pyplot as plt

# Chargement ou construction d'une image
image = data.checkerboard()
# image = np.zeros((200, 200))
# image[40:160, 40:160] = 255
# image[70:130, 70:130] = 0

# Détection des contours
edges = feature.canny(image, 2, 1, 25)

# Calcul de la transformée de Hough
h, theta, d = hough_line(edges, theta=np.linspace(-np.pi, np.pi, 200))

plt.figure()

# Affichage de l'image initiale
plt.subplot(221)
plt.imshow(image)
plt.title('Image initiale')

# Affichage des contours
plt.gray()
plt.subplot(222)
plt.imshow(edges)
plt.title('Contours')

# Affichage de la transformée de Hough
Esempio n. 59
0
def lines(base, test):
    """
    Reads two images of yoga poses and compares them.
    """
    image1 = imread(base, flatten=True)
    image2 = imread(test, flatten=True)

    # Angles
    a1 = []
    a2 = []

    group1_a1 = []
    group2_a1 = []
    group3_a1 = []
    # Generate figure and 2 axes from matplotlib
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

    # # Plot 1 -> Base Case (original)
    # print "Plot 1"
    h, theta, d = hough_line(image1)
    ax1.imshow(image1, cmap=plt.cm.get_cmap('gray'))
    rows, cols = image1.shape

    for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - cols * np.cos(angle)) / np.sin(angle)
        degree = degrees(angle)
        a1.append(degree)
        if degree < -45 or degree > 45:
            if degree < -85 or degree > 85:
                pos_horizontal = []
                neg_horizontal = []
                if degree > 0:
                    pos_horizontal.append(90 - degree)
                elif degree <= 0:
                    neg_horizontal.append(-(degree + 90))
                ax1.plot((0, cols), (y0, y1), '-r')
        elif degree > -45 and degree < 0:
            if degree > -40 and degree < -25:
                group2_a1.append(degree)
                ax1.plot((0, cols), (y0, y1), '-r')
        elif degree > 0 and degree < 45:
            if degree > 15 and degree < 40:
                group3_a1.append(degree)
                ax1.plot((0, cols), (y0, y1), '-r')

    ax1.axis((0, cols, rows, 0))
    ax1.set_title('Detected lines')
    ax1.set_axis_off()
    if len(pos_horizontal) == 0:
        avg_horizontal = reduce(lambda x, y: x + y, neg_horizontal) / float(len(neg_horizontal))
    elif len(neg_horizontal) == 0:
        avg_horizontal = reduce(lambda x, y: x + y, pos_horizontal) / float(len(pos_horizontal))
    else:
        avg_neg = reduce(lambda x, y: x + y, neg_horizontal) / float(len(neg_horizontal))
        avg_pos = reduce(lambda x, y: x + y, pos_horizontal) / float(len(pos_horizontal))
        avg_horizontal = (avg_pos + avg_neg)/2

    print "BASE HORIZONTAL: " + str(avg_horizontal)
    # print group2_a1
    # print group3_a1

    # Plot 2 -> Test Case (submission)
    # print "\nPlot 2"
    h1, theta1, d1 = hough_line(image2)
    ax2.imshow(image2, cmap=plt.cm.gray)
    rows, cols = image2.shape

    group1_a2 = []
    group2_a2 = []
    group3_a2 = []
    for _, angle, dist in zip(*hough_line_peaks(h1, theta1, d1)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - cols * np.cos(angle)) / np.sin(angle)
        degree = degrees(angle)
        a2.append(degree)
        if degree < -45 or degree > 45:
            if degree < -85 or degree > 85:
                pos_horizontal_user = []
                neg_horizontal_user = []
                if degree > 0:
                    pos_horizontal_user.append(90 - degree)
                elif degree <= 0:
                    neg_horizontal_user.append(-(degree + 90))
                ax2.plot((0, cols), (y0, y1), '-r')
        elif degree > -45 and degree < 0:
            if degree > -40 and degree < -25:
                group2_a2.append(degree)
                ax2.plot((0, cols), (y0, y1), '-r')
        elif degree > 0 and degree < 45:
            if degree > 15 and degree < 40:
                group3_a2.append(degree)
                ax2.plot((0, cols), (y0, y1), '-r')
        a2.append(degrees(angle))
        # ax2.plot((0, cols), (y0, y1), '-r')

    if len(pos_horizontal_user) == 0:
        avg_horizontal_user = reduce(lambda x, y: x + y, neg_horizontal_user) / float(len(neg_horizontal_user))
    elif len(neg_horizontal_user) == 0:
        avg_horizontal_user = reduce(lambda x, y: x + y, pos_horizontal_user) / float(len(pos_horizontal_user))
    else:
        avg_neg = reduce(lambda x, y: x + y, neg_horizontal_user) / float(len(neg_horizontal_user))
        avg_pos = reduce(lambda x, y: x + y, pos_horizontal_user) / float(len(pos_horizontal_user))
        avg_horizontal_user = (avg_pos + avg_neg)/2

    print "USER HORIZONTAL: " + str(avg_horizontal_user)
    # print sorted(a2, key=float)
    # print group2_a2
    # print group3_a2
    avg_down = -1
    avg_up =-1
    
    base_down = reduce(lambda x, y: x + y, group2_a1) / float(len(group2_a1))
    if len(group2_a2) > 0:
        avg_down = reduce(lambda x, y: x + y, group2_a2) / float(len(group2_a2))
    base_up = reduce(lambda x, y: x + y, group3_a1) / float(len(group3_a1))
    if len(group3_a2) > 0:
        avg_up = reduce(lambda x, y: x + y, group3_a2) / float(len(group3_a2))

    print "BASE DOWN: " + str(base_down)
    print "USER DOWN: " + str(avg_down)

    print "BASE UP: " + str(base_up)
    print "USER UP: " + str(avg_up)

    ax2.axis((0, cols, rows, 0))
    ax2.set_title('Detected lines')
    ax2.set_axis_off()

    plt.show()
    return a1, a2