Esempio n. 1
0
    def test_onnx_if_algebra_indirect_unnamed_clear_input(self):

        opv = TARGET_OPSET
        x1 = np.array([[0, 3], [7, 0]], dtype=np.float32)
        x2 = np.array([[1, 0], [2, 0]], dtype=np.float32)

        node_xy = OnnxMul('x1', 'x2', op_version=opv)
        node_then = OnnxAdd(
            'x1', 'xy', output_names=['absxythen'], op_version=opv)
        then_body = node_then.to_onnx(
            {'x1': x1, 'xy': x2}, target_opset=opv,
            outputs=[('absxythen', FloatTensorType())])
        node_else = OnnxSub(
            'x1', 'x2', output_names=['absxyelse'], op_version=opv)
        else_body = node_else.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('absxyelse', FloatTensorType())])

        cond = OnnxGreater(
            OnnxReduceSum('x1', op_version=opv),
            OnnxReduceSum('x2', op_version=opv),
            op_version=opv)
        ifnode = OnnxIf(cond, then_branch=then_body.graph,
                        else_branch=else_body.graph,
                        op_version=opv, output_names=['y'],
                        global_context={'xy': node_xy},
                        clear_subgraph_inputs=True)
        model_def = ifnode.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('y', FloatTensorType())])

        sess = InferenceSession(model_def.SerializeToString())
        res = sess.run(None, {'x1': x1, 'x2': x2})
        assert_almost_equal(x1 + x1 * x2, res[0])
Esempio n. 2
0
    def test_if2(self):

        opv = TARGET_OPSET
        x1 = numpy.array([[0, 3], [7, 0]], dtype=numpy.float32)
        x2 = numpy.array([[1, 0], [2, 0]], dtype=numpy.float32)

        node = OnnxAdd(
            'x1', 'x2', output_names=['absxythen'], op_version=opv)
        then_body = node.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('absxythen', FloatTensorType())])
        node = OnnxSub(
            'x1', 'x2', output_names=['absxyelse'], op_version=opv)
        else_body = node.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('absxyelse', FloatTensorType())])
        del else_body.graph.input[:]
        del then_body.graph.input[:]

        cond = OnnxGreater(
            OnnxReduceSum('x1', op_version=opv),
            OnnxReduceSum('x2', op_version=opv),
            op_version=opv)
        ifnode = OnnxIf(cond, then_branch=then_body.graph,
                        else_branch=else_body.graph,
                        op_version=opv, output_names=['y'])
        model_def = ifnode.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('y', FloatTensorType())])
        oinf = OnnxInference(model_def)
        dot = oinf.to_dot()
        self.assertIn("Gr_Greater -> Gr_C0;", dot)
Esempio n. 3
0
    def test_onnx_if_algebra_direct(self):

        opv = TARGET_OPSET
        x1 = np.array([[0, 3], [7, 0]], dtype=np.float32)
        x2 = np.array([[1, 0], [2, 0]], dtype=np.float32)

        node = OnnxAdd(
            'x1', 'x2', output_names=['absxythen'], op_version=opv)
        then_body = node.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('absxythen', FloatTensorType())])
        node = OnnxSub(
            'x1', 'x2', output_names=['absxyelse'], op_version=opv)
        else_body = node.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('absxyelse', FloatTensorType())])
        del else_body.graph.input[:]
        del then_body.graph.input[:]

        cond = OnnxGreater(
            OnnxReduceSum('x1', op_version=opv),
            OnnxReduceSum('x2', op_version=opv),
            op_version=opv)
        ifnode = OnnxIf(cond, then_branch=then_body.graph,
                        else_branch=else_body.graph,
                        op_version=opv, output_names=['y'])
        model_def = ifnode.to_onnx(
            {'x1': x1, 'x2': x2}, target_opset=opv,
            outputs=[('y', FloatTensorType())])

        sess = InferenceSession(model_def.SerializeToString())
        res = sess.run(None, {'x1': x1, 'x2': x2})
        assert_almost_equal(x1 + x2, res[0])
def validator_classifier_converter(scope, operator, container):
    input0 = operator.inputs[0]  # first input in ONNX graph
    outputs = operator.outputs  # outputs in ONNX graph
    op = operator.raw_operator  # scikit-learn model (mmust be fitted)
    opv = container.target_opset

    # The model calls another one. The class `OnnxSubEstimator`
    # calls the converter for this operator.
    model = op.estimator_
    onnx_op = OnnxSubEstimator(model,
                               input0,
                               op_version=opv,
                               options={'zipmap': False})

    rmax = OnnxReduceMax(onnx_op[1], axes=[1], keepdims=0, op_version=opv)
    great = OnnxGreater(rmax,
                        np.array([op.threshold], dtype=np.float32),
                        op_version=opv)
    valid = OnnxCast(great, to=onnx_proto.TensorProto.INT64, op_version=opv)

    r1 = OnnxIdentity(onnx_op[0],
                      output_names=[outputs[0].full_name],
                      op_version=opv)
    r2 = OnnxIdentity(onnx_op[1],
                      output_names=[outputs[1].full_name],
                      op_version=opv)
    r3 = OnnxIdentity(valid,
                      output_names=[outputs[2].full_name],
                      op_version=opv)

    r1.add_to(scope, container)
    r2.add_to(scope, container)
    r3.add_to(scope, container)
Esempio n. 5
0
def build_leaky_relu_decomposed_greater(alpha=0.5, target_opset=15):
    signo = OnnxGreater('X',
                        numpy.array([0], dtype=numpy.float32),
                        op_version=target_opset)
    sign = OnnxCast(signo, to=TensorProto.FLOAT, op_version=target_opset)
    fact = OnnxAdd(OnnxMul(sign,
                           numpy.array([1 - alpha], dtype=numpy.float32),
                           op_version=target_opset),
                   numpy.array([alpha], dtype=numpy.float32),
                   op_version=target_opset)
    x = OnnxMul('X', fact, op_version=target_opset, output_names=['Y'])
    return x.to_onnx({'X': FloatTensorType()},
                     outputs={'Y': FloatTensorType()},
                     target_opset=target_opset)
Esempio n. 6
0
    def test_onnx_simple_text_plot_if(self):

        opv = TARGET_OPSET
        x1 = numpy.array([[0, 3], [7, 0]], dtype=numpy.float32)
        x2 = numpy.array([[1, 0], [2, 0]], dtype=numpy.float32)

        node = OnnxAdd('x1', 'x2', output_names=['absxythen'], op_version=opv)
        then_body = node.to_onnx({
            'x1': x1,
            'x2': x2
        },
                                 target_opset=opv,
                                 outputs=[('absxythen', FloatTensorType())])
        node = OnnxSub('x1', 'x2', output_names=['absxyelse'], op_version=opv)
        else_body = node.to_onnx({
            'x1': x1,
            'x2': x2
        },
                                 target_opset=opv,
                                 outputs=[('absxyelse', FloatTensorType())])
        del else_body.graph.input[:]
        del then_body.graph.input[:]

        cond = OnnxGreater(OnnxReduceSum('x1', op_version=opv),
                           OnnxReduceSum('x2', op_version=opv),
                           op_version=opv)
        ifnode = OnnxIf(cond,
                        then_branch=then_body.graph,
                        else_branch=else_body.graph,
                        op_version=opv,
                        output_names=['y'])
        model_def = ifnode.to_onnx({
            'x1': x1,
            'x2': x2
        },
                                   target_opset=opv,
                                   outputs=[('y', FloatTensorType())])
        text = onnx_simple_text_plot(model_def)
        expected = textwrap.dedent("""
        input:
        """).strip(" \n")
        self.assertIn(expected, text)
        self.assertIn("If(Gr_C0) -> y", text)
        oinf = OnnxInference(model_def)
        text2 = oinf.to_text(kind="seq")
        self.assertEqual(text, text2)
Esempio n. 7
0
    def test_if(self):

        tensor_type = FloatTensorType
        op_version = TARGET_OPSET
        bthen = OnnxConstant(
            value_floats=numpy.array([0], dtype=numpy.float32),
            op_version=op_version, output_names=['res_then'])
        bthen.set_onnx_name_prefix('then')

        belse = OnnxConstant(
            value_floats=numpy.array([1], dtype=numpy.float32),
            op_version=op_version, output_names=['res_else'])
        belse.set_onnx_name_prefix('else')

        bthen_body = bthen.to_onnx(
            OrderedDict(), outputs=[('res_then', tensor_type())],
            target_opset=op_version)
        belse_body = belse.to_onnx(
            OrderedDict(),
            outputs=[('res_else', tensor_type())],
            target_opset=op_version)

        onx = OnnxIf(OnnxGreater('X', numpy.array([0], dtype=numpy.float32),
                                 op_version=op_version),
                     output_names=['Z'],
                     then_branch=bthen_body.graph,
                     else_branch=belse_body.graph,
                     op_version=op_version)

        x = numpy.array([1, 2], dtype=numpy.float32)
        y = numpy.array([1, 3], dtype=numpy.float32)
        model_def = onx.to_onnx({'X': x.astype(numpy.float32),
                                 'Y': y.astype(numpy.float32)},
                                target_opset=TARGET_OPSET)
        got = OnnxInference(model_def).run({'X': x, 'Y': y})
        self.assertEqualArray(numpy.array([0.], dtype=numpy.float32),
                              got['Z'])

        x = numpy.array([-1, -2], dtype=numpy.float32)
        y = numpy.array([-1, -3], dtype=numpy.float32)
        model_def = onx.to_onnx({'X': x.astype(numpy.float32),
                                 'Y': y.astype(numpy.float32)},
                                target_opset=TARGET_OPSET)
        got = OnnxInference(model_def).run({'X': x, 'Y': y})
        self.assertEqualArray(numpy.array([1.], dtype=numpy.float32),
                              got['Z'])
Esempio n. 8
0
    def test_onnx_if_to_dot(self):
        opv = 15
        x1 = numpy.array([[0, 3], [7, 0]], dtype=numpy.float32)
        x2 = numpy.array([[1, 0], [2, 0]], dtype=numpy.float32)

        node = OnnxAdd('x1', 'x2', output_names=['absxythen'], op_version=opv)
        then_body = node.to_onnx({
            'x1': x1,
            'x2': x2
        },
                                 target_opset=opv,
                                 outputs=[('absxythen', FloatTensorType())])
        node = OnnxSub('x1', 'x2', output_names=['absxyelse'], op_version=opv)
        else_body = node.to_onnx({
            'x1': x1,
            'x2': x2
        },
                                 target_opset=opv,
                                 outputs=[('absxyelse', FloatTensorType())])
        del else_body.graph.input[:]
        del then_body.graph.input[:]

        cond = OnnxGreater(OnnxReduceSum('x1', op_version=opv),
                           OnnxReduceSum('x2', op_version=opv),
                           op_version=opv)
        ifnode = OnnxIf(cond,
                        then_branch=then_body.graph,
                        else_branch=else_body.graph,
                        op_version=opv,
                        output_names=['y'])
        model_def = ifnode.to_onnx({
            'x1': x1,
            'x2': x2
        },
                                   target_opset=opv,
                                   outputs=[('y', FloatTensorType())])
        dot = OnnxInference(model_def, skip_run=True).to_dot(recursive=True)
        self.assertIn("subgraph cluster_If", dot)