Esempio n. 1
0
def test_loss_boundary(loss):
    """Test interval ranges of y_true and y_pred in losses."""
    # make sure low and high are always within the interval, used for linspace
    if loss.is_multiclass:
        y_true = np.linspace(0, 9, num=10)
    else:
        low, high = _inclusive_low_high(loss.interval_y_true)
        y_true = np.linspace(low, high, num=10)

    # add boundaries if they are included
    if loss.interval_y_true.low_inclusive:
        y_true = np.r_[y_true, loss.interval_y_true.low]
    if loss.interval_y_true.high_inclusive:
        y_true = np.r_[y_true, loss.interval_y_true.high]

    assert loss.in_y_true_range(y_true)

    n = y_true.shape[0]
    low, high = _inclusive_low_high(loss.interval_y_pred)
    if loss.is_multiclass:
        y_pred = np.empty((n, 3))
        y_pred[:, 0] = np.linspace(low, high, num=n)
        y_pred[:, 1] = 0.5 * (1 - y_pred[:, 0])
        y_pred[:, 2] = 0.5 * (1 - y_pred[:, 0])
    else:
        y_pred = np.linspace(low, high, num=n)

    assert loss.in_y_pred_range(y_pred)

    # calculating losses should not fail
    raw_prediction = loss.link.link(y_pred)
    loss.loss(y_true=y_true, raw_prediction=raw_prediction)
Esempio n. 2
0
def random_y_true_raw_prediction(loss,
                                 n_samples,
                                 y_bound=(-100, 100),
                                 raw_bound=(-5, 5),
                                 seed=42):
    """Random generate y_true and raw_prediction in valid range."""
    rng = np.random.RandomState(seed)
    if loss.is_multiclass:
        raw_prediction = np.empty((n_samples, loss.n_classes))
        raw_prediction.flat[:] = rng.uniform(
            low=raw_bound[0],
            high=raw_bound[1],
            size=n_samples * loss.n_classes,
        )
        y_true = np.arange(n_samples).astype(float) % loss.n_classes
    else:
        raw_prediction = rng.uniform(low=raw_bound[0],
                                     high=raw_bound[0],
                                     size=n_samples)
        # generate a y_true in valid range
        low, high = _inclusive_low_high(loss.interval_y_true)
        low = max(low, y_bound[0])
        high = min(high, y_bound[1])
        y_true = rng.uniform(low, high, size=n_samples)
        # set some values at special boundaries
        if loss.interval_y_true.low == 0 and loss.interval_y_true.low_inclusive:
            y_true[::(n_samples // 3)] = 0
        if loss.interval_y_true.high == 1 and loss.interval_y_true.high_inclusive:
            y_true[1::(n_samples // 3)] = 1

    return y_true, raw_prediction
Esempio n. 3
0
def test_is_in_range(interval):
    # make sure low and high are always within the interval, used for linspace
    low, high = _inclusive_low_high(interval)

    x = np.linspace(low, high, num=10)
    assert interval.includes(x)

    # x contains lower bound
    assert interval.includes(np.r_[x, interval.low]) == interval.low_inclusive

    # x contains upper bound
    assert interval.includes(np.r_[x, interval.high]) == interval.high_inclusive

    # x contains upper and lower bound
    assert interval.includes(np.r_[x, interval.low, interval.high]) == (
        interval.low_inclusive and interval.high_inclusive
    )