Esempio n. 1
0
 def route_clustering(self, params: dict) -> list:
     clf = DBSCAN(**params, n_jobs=-1)
     # clf = hdbscan.HDBSCAN(
     #   algorithm='best', alpha=1.0, approx_min_span_tree=True,
     #   gen_min_span_tree=False, leaf_size=40, memory=Memory(cachedir=None),
     #   metric=params['metric'], min_cluster_size=params['eps'],
     #   min_samples=params['min_samples'],
     #   p=None)
     return clf.fit_predict(self.dissimilarity_matrix)
def test_weighted_dbscan():
    # ensure sample_weight is validated
    assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2])
    assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4])

    # ensure sample_weight has an effect
    assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0])
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0])
    assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0])

    # points within eps of each other:
    assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0])
    # and effect of non-positive and non-integer sample_weight:
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0])
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0])

    # for non-negative sample_weight, cores should be identical to repetition
    rng = np.random.RandomState(42)
    sample_weight = rng.randint(0, 5, X.shape[0])
    core1, label1 = dbscan(X, sample_weight=sample_weight)
    assert_equal(len(label1), len(X))

    X_repeated = np.repeat(X, sample_weight, axis=0)
    core_repeated, label_repeated = dbscan(X_repeated)
    core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
    core_repeated_mask[core_repeated] = True
    core_mask = np.zeros(X.shape[0], dtype=bool)
    core_mask[core1] = True
    assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)

    # sample_weight should work with precomputed distance matrix
    D = pairwise_distances(X)
    core3, label3 = dbscan(D, sample_weight=sample_weight, metric="precomputed")
    assert_array_equal(core1, core3)
    assert_array_equal(label1, label3)

    # sample_weight should work with estimator
    est = DBSCAN().fit(X, sample_weight=sample_weight)
    core4 = est.core_sample_indices_
    label4 = est.labels_
    assert_array_equal(core1, core4)
    assert_array_equal(label1, label4)

    est = DBSCAN()
    label5 = est.fit_predict(X, sample_weight=sample_weight)
    core5 = est.core_sample_indices_
    assert_array_equal(core1, core5)
    assert_array_equal(label1, label5)
    assert_array_equal(label1, est.labels_)
Esempio n. 3
0
def test_weighted_dbscan():
    # ensure sample_weight is validated
    assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2])
    assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4])

    # ensure sample_weight has an effect
    assert_array_equal([], dbscan([[0], [1]], sample_weight=None,
                                  min_samples=6)[0])
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5],
                                  min_samples=6)[0])
    assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5],
                                   min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6],
                                      min_samples=6)[0])

    # points within eps of each other:
    assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5,
                                      sample_weight=[5, 1], min_samples=6)[0])
    # and effect of non-positive and non-integer sample_weight:
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0],
                                  eps=1.5, min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1],
                                      eps=1.5, min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0],
                                      eps=1.5, min_samples=6)[0])
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1],
                                  eps=1.5, min_samples=6)[0])

    # for non-negative sample_weight, cores should be identical to repetition
    rng = np.random.RandomState(42)
    sample_weight = rng.randint(0, 5, X.shape[0])
    core1, label1 = dbscan(X, sample_weight=sample_weight)
    assert_equal(len(label1), len(X))

    X_repeated = np.repeat(X, sample_weight, axis=0)
    core_repeated, label_repeated = dbscan(X_repeated)
    core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
    core_repeated_mask[core_repeated] = True
    core_mask = np.zeros(X.shape[0], dtype=bool)
    core_mask[core1] = True
    assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)

    # sample_weight should work with precomputed distance matrix
    D = pairwise_distances(X)
    core3, label3 = dbscan(D, sample_weight=sample_weight,
                           metric='precomputed')
    assert_array_equal(core1, core3)
    assert_array_equal(label1, label3)

    # sample_weight should work with estimator
    est = DBSCAN().fit(X, sample_weight=sample_weight)
    core4 = est.core_sample_indices_
    label4 = est.labels_
    assert_array_equal(core1, core4)
    assert_array_equal(label1, label4)

    est = DBSCAN()
    label5 = est.fit_predict(X, sample_weight=sample_weight)
    core5 = est.core_sample_indices_
    assert_array_equal(core1, core5)
    assert_array_equal(label1, label5)
    assert_array_equal(label1, est.labels_)