def fit(self, X, y=None): self._sklearn_model = SKLModel(**self._hyperparams) if (y is not None): self._sklearn_model.fit(X, y) else: self._sklearn_model.fit(X) return self
def __init__(self, n_components=2, scale=True, copy=True): self._hyperparams = { 'n_components': n_components, 'scale': scale, 'copy': copy } self._wrapped_model = SKLModel(**self._hyperparams)
class PLSSVDImpl(): def __init__(self, n_components=2, scale=True, copy=True): self._hyperparams = { 'n_components': n_components, 'scale': scale, 'copy': copy } def fit(self, X, y=None): self._sklearn_model = SKLModel(**self._hyperparams) if (y is not None): self._sklearn_model.fit(X, y) else: self._sklearn_model.fit(X) return self def transform(self, X): return self._sklearn_model.transform(X)
'MultinomialNB':MultinomialNB(), 'NMF':NMF(), 'NearestCentroid':NearestCentroid(), 'NearestNeighbors':NearestNeighbors(), 'Normalizer':Normalizer(), 'NuSVC':NuSVC(), 'NuSVR':NuSVR(), 'Nystroem':Nystroem(), 'OAS':OAS(), 'OneClassSVM':OneClassSVM(), 'OrthogonalMatchingPursuit':OrthogonalMatchingPursuit(), 'OrthogonalMatchingPursuitCV':OrthogonalMatchingPursuitCV(), 'PCA':PCA(), 'PLSCanonical':PLSCanonical(), 'PLSRegression':PLSRegression(), 'PLSSVD':PLSSVD(), 'PassiveAggressiveClassifier':PassiveAggressiveClassifier(), 'PassiveAggressiveRegressor':PassiveAggressiveRegressor(), 'Perceptron':Perceptron(), 'ProjectedGradientNMF':ProjectedGradientNMF(), 'QuadraticDiscriminantAnalysis':QuadraticDiscriminantAnalysis(), 'RANSACRegressor':RANSACRegressor(), 'RBFSampler':RBFSampler(), 'RadiusNeighborsClassifier':RadiusNeighborsClassifier(), 'RadiusNeighborsRegressor':RadiusNeighborsRegressor(), 'RandomForestClassifier':RandomForestClassifier(), 'RandomForestRegressor':RandomForestRegressor(), 'RandomizedLasso':RandomizedLasso(), 'RandomizedLogisticRegression':RandomizedLogisticRegression(), 'RandomizedPCA':RandomizedPCA(), 'Ridge':Ridge(),