Esempio n. 1
0
def test_sample_weight_init_estimators():
    # Smoke test for init estimators with sample weights.
    rng = check_random_state(13)
    X = rng.rand(100, 2)
    sample_weight = np.ones(100)
    reg_y = rng.rand(100)

    clf_y = rng.randint(0, 2, size=100)

    for Loss in LOSS_FUNCTIONS.values():
        if Loss is None:
            continue
        if issubclass(Loss, RegressionLossFunction):
            k = 1
            y = reg_y
        else:
            k = 2
            y = clf_y
            if Loss.is_multi_class:
                # skip multiclass
                continue

        loss = Loss(k)
        init_est = loss.init_estimator()
        init_est.fit(X, y)
        out = init_est.predict(X)
        assert_equal(out.shape, (y.shape[0], 1))

        sw_init_est = loss.init_estimator()
        sw_init_est.fit(X, y, sample_weight=sample_weight)
        sw_out = init_est.predict(X)
        assert_equal(sw_out.shape, (y.shape[0], 1))

        # check if predictions match
        assert_array_equal(out, sw_out)
def test_sample_weight_init_estimators():
    # Smoke test for init estimators with sample weights.
    rng = check_random_state(13)
    X = rng.rand(100, 2)
    sample_weight = np.ones(100)
    reg_y = rng.rand(100)

    clf_y = rng.randint(0, 2, size=100)

    for Loss in LOSS_FUNCTIONS.values():
        if Loss is None:
            continue
        if issubclass(Loss, RegressionLossFunction):
            k = 1
            y = reg_y
        else:
            k = 2
            y = clf_y
            if Loss.is_multi_class:
                # skip multiclass
                continue

        loss = Loss(k)
        init_est = loss.init_estimator()
        init_est.fit(X, y)
        out = init_est.predict(X)
        assert_equal(out.shape, (y.shape[0], 1))

        sw_init_est = loss.init_estimator()
        sw_init_est.fit(X, y, sample_weight=sample_weight)
        sw_out = init_est.predict(X)
        assert_equal(sw_out.shape, (y.shape[0], 1))

        # check if predictions match
        assert_array_equal(out, sw_out)
Esempio n. 3
0
def test_sample_weight_deviance():
    # Test if deviance supports sample weights.
    rng = check_random_state(13)
    X = rng.rand(100, 2)
    sample_weight = np.ones(100)
    reg_y = rng.rand(100)
    clf_y = rng.randint(0, 2, size=100)
    mclf_y = rng.randint(0, 3, size=100)

    for Loss in LOSS_FUNCTIONS.values():
        if Loss is None:
            continue
        if issubclass(Loss, RegressionLossFunction):
            k = 1
            y = reg_y
            p = reg_y
        else:
            k = 2
            y = clf_y
            p = clf_y
            if Loss.is_multi_class:
                k = 3
                y = mclf_y
                # one-hot encoding
                p = np.zeros((y.shape[0], k), dtype=np.float64)
                for i in range(k):
                    p[:, i] = y == i

        loss = Loss(k)
        deviance_w_w = loss(y, p, sample_weight)
        deviance_wo_w = loss(y, p)
        assert deviance_wo_w == deviance_w_w
def test_sample_weight_deviance():
    # Test if deviance supports sample weights.
    rng = check_random_state(13)
    X = rng.rand(100, 2)
    sample_weight = np.ones(100)
    reg_y = rng.rand(100)
    clf_y = rng.randint(0, 2, size=100)
    mclf_y = rng.randint(0, 3, size=100)

    for Loss in LOSS_FUNCTIONS.values():
        if Loss is None:
            continue
        if issubclass(Loss, RegressionLossFunction):
            k = 1
            y = reg_y
            p = reg_y
        else:
            k = 2
            y = clf_y
            p = clf_y
            if Loss.is_multi_class:
                k = 3
                y = mclf_y
                # one-hot encoding
                p = np.zeros((y.shape[0], k), dtype=np.float64)
                for i in range(k):
                    p[:, i] = y == i

        loss = Loss(k)
        deviance_w_w = loss(y, p, sample_weight)
        deviance_wo_w = loss(y, p)
        assert deviance_wo_w == deviance_w_w