Esempio n. 1
0
def test_gpr_interpolation(kernel):
    # Test the interpolating property for different kernels.
    gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
    y_pred, y_cov = gpr.predict(X, return_cov=True)

    assert_almost_equal(y_pred, y)
    assert_almost_equal(np.diag(y_cov), 0.)
def get_globals():
    X = np.array([
        [0.00, 0.00],
        [0.99, 0.99],
        [0.00, 0.99],
        [0.99, 0.00],
        [0.50, 0.50],
        [0.25, 0.50],
        [0.50, 0.25],
        [0.75, 0.50],
        [0.50, 0.75],
    ])

    def get_y(X):
        return -(X[:, 0] - 0.3) ** 2 - 0.5 * (X[:, 1] - 0.6)**2 + 2
    y = get_y(X)

    mesh = np.dstack(
        np.meshgrid(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01))
    ).reshape(-1, 2)

    GP = GaussianProcessRegressor(
        kernel=Matern(),
        n_restarts_optimizer=25,
    )
    GP.fit(X, y)

    return {'x': X, 'y': y, 'gp': GP, 'mesh': mesh}
Esempio n. 3
0
def test_y_normalization():
    """ Test normalization of the target values in GP

    Fitting non-normalizing GP on normalized y and fitting normalizing GP
    on unnormalized y should yield identical results
    """
    y_mean = y.mean(0)
    y_norm = y - y_mean
    for kernel in kernels:
        # Fit non-normalizing GP on normalized y
        gpr = GaussianProcessRegressor(kernel=kernel)
        gpr.fit(X, y_norm)
        # Fit normalizing GP on unnormalized y
        gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        gpr_norm.fit(X, y)

        # Compare predicted mean, std-devs and covariances
        y_pred, y_pred_std = gpr.predict(X2, return_std=True)
        y_pred = y_mean + y_pred
        y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)

        assert_almost_equal(y_pred, y_pred_norm)
        assert_almost_equal(y_pred_std, y_pred_std_norm)

        _, y_cov = gpr.predict(X2, return_cov=True)
        _, y_cov_norm = gpr_norm.predict(X2, return_cov=True)
        assert_almost_equal(y_cov, y_cov_norm)
Esempio n. 4
0
def test_predict_cov_vs_std():
    """ Test that predicted std.-dev. is consistent with cov's diagonal."""
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        y_mean, y_cov = gpr.predict(X2, return_cov=True)
        y_mean, y_std = gpr.predict(X2, return_std=True)
        assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
Esempio n. 5
0
def test_lml_improving():
    """ Test that hyperparameter-tuning improves log-marginal likelihood. """
    for kernel in kernels:
        if kernel == fixed_kernel: continue
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta),
                       gpr.log_marginal_likelihood(kernel.theta))
def bo_(x_obs, y_obs):
    kernel = kernels.Matern() + kernels.WhiteKernel()
    gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=16)
    gp.fit(x_obs, y_obs)

    xs = list(repeat(np.atleast_2d(np.linspace(0, 10, 128)).T, 2))
    x = cartesian_product(*xs)

    a = a_EI(gp, x_obs=x_obs, y_obs=y_obs)

    argmin_a_x = x[np.argmax(a(x))]

    # heavy evaluation
    print("f({})".format(argmin_a_x))
    f_argmin_a_x = f2d(np.atleast_2d(argmin_a_x))


    plot_2d(gp, x_obs, y_obs, argmin_a_x, a, xs)
    plt.show()


    bo_(
        x_obs=np.vstack((x_obs, argmin_a_x)),
        y_obs=np.hstack((y_obs, f_argmin_a_x)),
    )
Esempio n. 7
0
def test_gpr_interpolation():
    """Test the interpolating property for different kernels."""
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        y_pred, y_cov = gpr.predict(X, return_cov=True)

        assert_true(np.allclose(y_pred, y))
        assert_true(np.allclose(np.diag(y_cov), 0.))
def test_acquisition_api():
    rng = np.random.RandomState(0)
    X = rng.randn(10, 2)
    y = rng.randn(10)
    gpr = GaussianProcessRegressor()
    gpr.fit(X, y)

    for method in [gaussian_ei, gaussian_lcb, gaussian_pi]:
        assert_array_equal(method(X, gpr).shape, 10)
        assert_raises(ValueError, method, rng.rand(10), gpr)
Esempio n. 9
0
def test_converged_to_local_maximum(kernel):
    # Test that we are in local maximum after hyperparameter-optimization.
    gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

    lml, lml_gradient = \
        gpr.log_marginal_likelihood(gpr.kernel_.theta, True)

    assert_true(np.all((np.abs(lml_gradient) < 1e-4) |
                       (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) |
                       (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1])))
Esempio n. 10
0
def test_lml_gradient():
    """ Compare analytic and numeric gradient of log marginal likelihood. """
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

        lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True)
        lml_gradient_approx = approx_fprime(
            kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10
        )

        assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
Esempio n. 11
0
def test_prior(kernel):
    # Test that GP prior has mean 0 and identical variances.
    gpr = GaussianProcessRegressor(kernel=kernel)

    y_mean, y_cov = gpr.predict(X, return_cov=True)

    assert_almost_equal(y_mean, 0, 5)
    if len(gpr.kernel.theta) > 1:
        # XXX: quite hacky, works only for current kernels
        assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5)
    else:
        assert_almost_equal(np.diag(y_cov), 1, 5)
Esempio n. 12
0
def test_sample_statistics():
    """ Test that statistics of samples drawn from GP are correct."""
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)

        y_mean, y_cov = gpr.predict(X2, return_cov=True)

        samples = gpr.sample_y(X2, 300000)

        # More digits accuracy would require many more samples
        assert_almost_equal(y_mean, np.mean(samples, 1), 2)
        assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(), np.var(samples, 1) / np.diag(y_cov).max(), 1)
class SmoothFunctionCreator():
    def __init__(self, seed=42):
        self._gp = GaussianProcessRegressor()
        x_train = np.array([0.0, 2.0, 6.0, 10.0])[:, np.newaxis]
        source_train = np.array([0.0, 1.0, -1.0, 0.0])
        self._gp.fit(x_train, source_train)
        self._random_state = np.random.RandomState(seed)

    def sample(self, n_samples):
        x = np.linspace(0.0, 10.0, 100)[:, np.newaxis]
        source = self._gp.sample_y(x, n_samples, random_state=self._random_state)
        target = gaussian_filter1d(source, 1, order=1, axis=0)
        target = np.tanh(10.0 * target)
        return source, target
Esempio n. 14
0
def fit_GP(x_train):

    y_train = gaussian(x_train, mu, sig).ravel()

    # Instanciate a Gaussian Process model
    kernel = C(1.0, (1e-3, 1e3)) * RBF(1, (1e-2, 1e2))
    gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)

    # Fit to data using Maximum Likelihood Estimation of the parameters
    gp.fit(x_train, y_train)

    # Make the prediction on the meshed x-axis (ask for MSE as well)
    y_pred, sigma = gp.predict(x, return_std=True)
    return y_train, y_pred, sigma
Esempio n. 15
0
def test_no_fit_default_predict():
    # Test that GPR predictions without fit does not break by default.
    default_kernel = (C(1.0, constant_value_bounds="fixed") *
                      RBF(1.0, length_scale_bounds="fixed"))
    gpr1 = GaussianProcessRegressor()
    _, y_std1 = gpr1.predict(X, return_std=True)
    _, y_cov1 = gpr1.predict(X, return_cov=True)

    gpr2 = GaussianProcessRegressor(kernel=default_kernel)
    _, y_std2 = gpr2.predict(X, return_std=True)
    _, y_cov2 = gpr2.predict(X, return_cov=True)

    assert_array_almost_equal(y_std1, y_std2)
    assert_array_almost_equal(y_cov1, y_cov2)
def plot_gp(x_min, x_max, x, y, train_features, train_labels):
    
    fig = plt.figure(figsize=(16, 10))
    fig.suptitle('Gaussian Process and Utility Function After {} Steps'.format(len(train_features)), fontdict={'size':30})
    
    gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) 
    axis = plt.subplot(gs[0])
    acq = plt.subplot(gs[1])
    
    gp = GaussianProcessRegressor(
    kernel=Matern(nu=2.5),
    n_restarts_optimizer=25, )
    
    gp.fit(train_features, train_labels)
    mu, sigma = gp.predict(x, return_std=True)
    
    axis.plot(x, y, linewidth=3, label='Target')
    axis.plot(train_features.flatten(), train_labels, 'D', markersize=8, label=u'Observations', color='r')
    axis.plot(x, mu, '--', color='k', label='Prediction')

    axis.fill(np.concatenate([x, x[::-1]]), 
              np.concatenate([mu - 1.9600 * sigma, (mu + 1.9600 * sigma)[::-1]]),
        alpha=.6, fc='c', ec='None', label='95% confidence interval')
    
    axis.set_xlim((x_min, x_max))
    axis.set_ylim((None, None))
    axis.set_ylabel('f(x)', fontdict={'size':20})
    axis.set_xlabel('x', fontdict={'size':20})
    
    
    bounds = np.asarray([[x_min, x_max]])
    
    acquisition_fucntion_kappa = 5
    
    mean, std = gp.predict(x, return_std=True)
    acquisition_fucntion_values = mean + acquisition_fucntion_kappa * std    
    
    acq.plot(x, acquisition_fucntion_values, label='Utility Function', color='purple')
    
    acq.plot(x[np.argmax(acquisition_fucntion_values)], np.max(acquisition_fucntion_values), '*', markersize=15, 
             label=u'Next Best Guess', markerfacecolor='gold', markeredgecolor='k', markeredgewidth=1)
    acq.set_xlim((x_min, x_max))
    acq.set_ylim((0, np.max(acquisition_fucntion_values) + 0.5))
    acq.set_ylabel('Utility', fontdict={'size':20})
    acq.set_xlabel('x', fontdict={'size':20})
    
    axis.legend(loc=2, bbox_to_anchor=(1.01, 1), borderaxespad=0.)
    acq.legend(loc=2, bbox_to_anchor=(1.01, 1), borderaxespad=0.)
Esempio n. 17
0
def test_K_inv_reset(kernel):
    y2 = f(X2).ravel()

    # Test that self._K_inv is reset after a new fit
    gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
    assert hasattr(gpr, '_K_inv')
    assert gpr._K_inv is None
    gpr.predict(X, return_std=True)
    assert gpr._K_inv is not None
    gpr.fit(X2, y2)
    assert gpr._K_inv is None
    gpr.predict(X2, return_std=True)
    gpr2 = GaussianProcessRegressor(kernel=kernel).fit(X2, y2)
    gpr2.predict(X2, return_std=True)
    # the value of K_inv should be independent of the first fit
    assert_array_equal(gpr._K_inv, gpr2._K_inv)
Esempio n. 18
0
    def __init__(self, name, title, Myy, trainHisto, dataHisto):
        super(RooGPBkg, self).__init__(self, name, title, Myy)
        self.name = name
        self.title = title
        self.Myy = Myy
        self.trainHisto = trainHisto
        self.dataHisto = dataHisto

        self.kernel = C((2.98e4)**2, (1e-3, 1e15)) * RBF(60, (1,1e5 )) #squared exponential kernel
        trainHisto.Scale(dataHisto.Integral()/trainHisto.Integral())
        self.opt_kernel = self.setTrainMC(trainHisto)

        #Need to think a bit more about how to set the range correctly here.
        self.sigFunction = ROOT.TF1("dscb", DSCB, 105, 160, 2)

        self.currentNSig = None
        self.currentSBHist = None

        GPh = GPHisto(dataHisto)
        X = GPh.getXArr()
        Y = GPh.getYArr()
        dataErrs = GPh.getErrArr()
        self.gp = GaussianProcessRegressor(kernel=self.opt_kernel,  #previously optimized kernel
                                            optimizer=None,         # Dont reoptimize hyperparamters.
                                            alpha=dataErrs**2)

        self.gp.fit(X,Y)
        y_pred, sigma = self.gp.predict(X, return_std=True)
        #self.gpHisto = arrayToHisto("GPhisto", 105, 160, y_pred)
        self.gpHisto = GPh.getHisto(y_pred, sigma, "GPhisto")
    def fit_gpr_model(self):
        '''
        create and fit the gaussian process model.
        the results in the model object are stored in a class variable
        '''
        # prepare input for fitting function
        X = self.hist[['wness_bin_center', 'dw23_bin_center']].values
        y = self.hist['entries'].values

        # uncertainty of counts from a poisson distribution
        dy = np.sqrt(y)
        # "nugget" is used to inform fitting algorithm of input uncertainty
        nugget = (dy / y) ** 2
        inds = np.where(np.isnan(nugget))
        nugget[inds] = 1.0

        if self.flatten_wness:
            y = self.do_flatten_wness()

        # define kernel
        if self.noise:
            self.kernel = 1.0 * RBF([.1, .1]) + WhiteKernel(0.1)
        else:
            self.kernel = RBF([.1, .1])

        # Instanciate a Gaussian Process model
        self.gp = GaussianProcessRegressor(kernel=self.kernel,
                                           alpha=nugget,
                                           normalize_y=False,
                                           n_restarts_optimizer=10)

        # Fit to data using Maximum Likelihood Estimation of the parameters
        self.gp.fit(X, y)

        print self.gp.kernel_
    def __init__(self, f, pbounds, random_state=None, verbose=1):
        """
        :param f:
            Function to be maximized.

        :param pbounds:
            Dictionary with parameters names as keys and a tuple with minimum
            and maximum values.

        :param verbose:
            Whether or not to print progress.

        """
        # Store the original dictionary
        self.pbounds = pbounds

        self.random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self.space = TargetSpace(f, pbounds, random_state)

        # Initialization flag
        self.initialized = False

        # Initialization lists --- stores starting points before process begins
        self.init_points = []
        self.x_init = []
        self.y_init = []

        # Counter of iterations
        self.i = 0

        # Internal GP regressor
        self.gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            n_restarts_optimizer=25,
            random_state=self.random_state
        )

        # Utility Function placeholder
        self.util = None

        # PrintLog object
        self.plog = PrintLog(self.space.keys)

        # Output dictionary
        self.res = {}
        # Output dictionary
        self.res['max'] = {'max_val': None,
                           'max_params': None}
        self.res['all'] = {'values': [], 'params': []}

        # non-public config for maximizing the aquisition function
        # (used to speedup tests, but generally leave these as is)
        self._acqkw = {'n_warmup': 100000, 'n_iter': 250}

        # Verbose
        self.verbose = verbose
Esempio n. 21
0
    def test_GP_brownian_motion(self):
        from sklearn.gaussian_process import GaussianProcessRegressor
        from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C

        # add data
        t = np.linspace(0, 10, 100)
        #
        # Instanciate a Gaussian Process model
        # kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
        # Instanciate a Gaussian Process model
        kernel = lambda x, y: 1. * min(x, y)
        # kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
        gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
        # gp = GaussianProcessRegressor()

        # Fit to data using Maximum Likelihood Estimation of the parameters
        X = np.atleast_2d(t).T
        gp.fit(X, y)

        # gp = GaussianProcessRegressor()

        # Fit to data using Maximum Likelihood Estimation of the parameters
        # gp.fit(t, y)

        # Make the prediction on the meshed x-axis (ask for MSE as well)
        # y_star, err_y_star = gp.predict(t, return_std=True)
        # Make the prediction on the meshed x-axis (ask for MSE as well)
        y_pred, sigma = gp.predict(t, return_std=True)

        fig = plt.figure()
        ax = fig.add_axes((0.1, 0.3, 0.8, 0.65))
        ax.invert_yaxis()

        ax.plot(t, y, color='blue', label='L bol', lw=2.5)
        ax.errorbar(t, y, yerr=yerr, fmt='o', color='blue', label='%s obs.')

        #
        # ax.plot(t, y_star, color='red', ls='--', lw=1.5, label='GP')
        ax.plot(t, y_pred, '-', color='gray')
        # ax.fill_between(t, y_star - 2 * err_y_star, y_star + 2 * err_y_star, color='gray', alpha=0.3)
        ax.fill(np.concatenate([t, t[::-1]]),
                np.concatenate([y_pred - 1.9600 * sigma,
                                (y_pred + 1.9600 * sigma)[::-1]]),
                alpha=.5, fc='b', ec='None', label='95% confidence interval')

        plt.show()
Esempio n. 22
0
def plot_gaussian(data, col):
    '''
        Plots the gaussian process regression with a characteristic length scale
        of 10 years. Essentially this highlights the 'slow trend' in the data.
        
        Parameters
        ----------
        
        data: dataframe
        pandas dataframe containing 'date', 'linMean' which is the average
        runtime and 'linSD' which is the standard deviation.
        
        col: string
        the color in which the plot the data
        '''
    #extract the results from the dataframe
    Year = np.array(data[u'date'].tolist())
    Mean = np.array(data[u'linMean'].tolist())
    SD = np.array(data[u'linSD'].tolist())
    
    #initialize the gaussian process. Note that the process is calculated with a
    #length scale of 10years to give the 'slow trend' in the results.
    length_scale = 10.
    kernel = 1.* RBF(length_scale)
    gp = GaussianProcessRegressor(kernel=kernel, sigma_squared_n=(SD) ** 2, \
                                  normalize_y=True)
    
    #now fit the data and get the predicted mean and standard deviation
    #Note: for reasons that are unclear, GaussianProcessRegressor won't take 1D
    #arrays so the data are converted to 2D and then converted back for plotting
    gp.fit(np.atleast_2d(Year).T, np.atleast_2d(Mean).T)
    Year_array = np.atleast_2d(np.linspace(min(Year)-2, max(Year)+2, 100)).T
    Mean_prediction, SD_prediction = gp.predict(Year_pred, return_std=True)
    Year_array=Year_array.ravel()
    Mean_prediction=Mean_prediction.ravel()
    
    #plot the predicted best fit
    plt.plot(Year_array, Mean_prediction, col, alpha=1)
    #plot the 95% confidence interval
    plt.fill_between(Year_array, (Mean_prediction - 1.9600 * SD_prediction), \
                     y2=(Mean_prediction + 1.9600 * SD_prediction), alpha=0.5, \
                     color=col)
    plt.draw()
Esempio n. 23
0
    def fit(self, X, y):
        """ Use X and y to train a Gaussian process. """
        super(GP, self).fit(X, y)

        # skip training the process if there aren't enough samples
        if X.shape[0] < self.r_minimum:
            return

        self.gp = GaussianProcessRegressor(normalize_y=True)
        self.gp.fit(X, y)
Esempio n. 24
0
    def fit(self, X, y):

        def jitter(x, range):
            y = np.copy(x)
            scale_exp_min = np.abs(np.ceil(np.log10(range[0])))
            scale_exp_max = np.abs(np.ceil(np.log10(range[1])))
            scale_exp = (scale_exp_max + scale_exp_min) / 2.
            r = np.random.rand(y.size) / (10**scale_exp)
            y = y + r
            return y

        # Print msg. when going into gcp.fit
        strMessage = "rows in X = %d, r_minimum = %d" % (X.shape[0], self.r_minimum)
        logger.debug(strMessage)

        # Use X and y to train a Gaussian Copula Process.
        super(GCP, self).fit(X, y)

        # skip training the process if there aren't enough samples
        if X.shape[0] < self.r_minimum:
            return

        # -- Non-parametric model of 'y', estimated with kernel density
        kernel_pdf = st.gaussian_kde(y)
        kernel_cdf = make_cdf(kernel_pdf)
        kernel_ppf = make_ppf(kernel_pdf)
        y_kernel_model = {'pdf': kernel_pdf, 'cdf': kernel_cdf, 'ppf': kernel_ppf}
        self.y_kernel_model = y_kernel_model

        # - Transform y-->F-->vF-->norm.ppf-->v
        vF = y_kernel_model['cdf'](y)
        v = st.norm.ppf(vF)

        # -- Non-parametric model of each feature in 'X', estimated with kernel density
        X_kernel_model = []
        for ki in range(X.shape[1]):
            columnX = X[:, ki]
            if self.tunables[ki][1].is_integer:
                columnX = jitter(columnX, self.tunables[ki][1].range)
            kernel_pdf = st.gaussian_kde(columnX)
            kernel_cdf = make_cdf(kernel_pdf)
            kernel_ppf = make_ppf(kernel_pdf)
            kernel_model = {'pdf': kernel_pdf, 'cdf': kernel_cdf, 'ppf': kernel_ppf}
            X_kernel_model.append(kernel_model)
        self.X_kernel_model = X_kernel_model

        # -- Transform X-->F-->uF-->norm.ppf-->U
        U = np.empty_like(X)
        for ki in range(X.shape[1]):
            uF = X_kernel_model[ki]['cdf'](X[:, ki])
            U[:, ki] = st.norm.ppf(uF)

        # - Instantiate a GP and fit it with (U, v)
        self.gcp = GaussianProcessRegressor(normalize_y=True)
        self.gcp.fit(U, v)
Esempio n. 25
0
    def theta(self, weights):
        self.weights = np.exp(np.asarray(weights, dtype=np.float))

        # Parse weights into its components
        self.theta_gp, self.theta_l, self.length_scales = \
            self._parse_weights(self.weights)

        # Train length-scale Gaussian Process
        kernel = RBF(self.theta_l, length_scale_bounds="fixed")
        self.gp_l = GaussianProcessRegressor(kernel=kernel)
        self.gp_l.fit(self.X_, np.log10(self.length_scales))
Esempio n. 26
0
def test_custom_optimizer():
    """ Test that GPR can use externally defined optimizers. """
    # Define a dummy optimizer that simply tests 50 random hyperparameters
    def optimizer(obj_func, initial_theta, bounds):
        rng = np.random.RandomState(0)
        theta_opt, func_min = initial_theta, obj_func(initial_theta, eval_gradient=False)
        for _ in range(50):
            theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1])))
            f = obj_func(theta, eval_gradient=False)
            if f < func_min:
                theta_opt, func_min = theta, f
        return theta_opt, func_min

    for kernel in kernels:
        if kernel == fixed_kernel:
            continue
        gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer)
        gpr.fit(X, y)
        # Checks that optimizer improved marginal likelihood
        assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(gpr.kernel.theta))
Esempio n. 27
0
    def _determine_contextparams(self, optimizer):
        """Select context and params jointly using ACES."""
        # Choose the first samples uniform randomly
        if len(optimizer.X_) < optimizer.initial_random_samples:
            cx = np.random.uniform(self.cx_boundaries[:, 0],
                                   self.cx_boundaries[:, 1])
            return cx[:self.context_dims], cx[self.context_dims:]

        # Prepare entropy search objective
        self._init_es_ensemble()
        # Generate data for function mapping
        # query_context x query_parameters x eval_context -> entropy reduction
        n_query_points = 500
        n_data_dims = 2 * self.context_dims + self.dimension
        X = np.empty((n_query_points, n_data_dims))
        y = np.empty(n_query_points)
        for i in range(n_query_points):
            # Select query point and evaluation context randomly
            query = np.random.uniform(self.cx_boundaries[:, 0],
                                      self.cx_boundaries[:, 1])
            ind = np.random.choice(self.n_context_samples)
            # Store query point in X and value of entropy-search in y
            X[i, :self.context_dims + self.dimension] = query
            X[i, self.context_dims + self.dimension:] = \
                self.context_samples[ind] - query[:self.context_dims]
            y[i] = self.entropy_search_ensemble[ind](query)[0]

        # Fit GP model to this data
        kernel = C(1.0, (1e-10, 100.0)) \
            * RBF(length_scale=(1.0,)*n_data_dims,
                  length_scale_bounds=[(0.01, 10.0),]*n_data_dims) \
            + WhiteKernel(1.0, (1e-10, 100.0))
        self.es_surrogate = GaussianProcessRegressor(kernel=kernel)
        self.es_surrogate.fit(X, y)

        # Select query based on mean entropy reduction in surrogate model
        # predictions
        contexts = np.random.uniform(self.context_boundaries[:, 0],
                                     self.context_boundaries[:, 1],
                                     (250, self.context_dims))
        def objective_function(cx):
            X_query = np.empty((250, n_data_dims))
            X_query[:, :self.context_dims + self.dimension] = cx
            X_query[:, self.context_dims + self.dimension:] = \
                contexts - cx[:self.context_dims]
            es_pred, es_cov = \
                self.es_surrogate.predict(X_query, return_cov=True)
            return es_pred.mean() + self.kappa * np.sqrt(es_cov.mean())

        cx = global_optimization(
                objective_function, boundaries=self.cx_boundaries,
                optimizer=self.optimizer, maxf=optimizer.maxf)
        return cx[:self.context_dims], cx[self.context_dims:]
Esempio n. 28
0
def test_random_starts():
    # Test that an increasing number of random-starts of GP fitting only
    # increases the log marginal likelihood of the chosen theta.
    n_samples, n_features = 25, 2
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_features) * 2 - 1
    y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \
        + rng.normal(scale=0.1, size=n_samples)

    kernel = C(1.0, (1e-2, 1e2)) \
        * RBF(length_scale=[1.0] * n_features,
              length_scale_bounds=[(1e-4, 1e+2)] * n_features) \
        + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1))
    last_lml = -np.inf
    for n_restarts_optimizer in range(5):
        gp = GaussianProcessRegressor(
            kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
            random_state=0,).fit(X, y)
        lml = gp.log_marginal_likelihood(gp.kernel_.theta)
        assert_greater(lml, last_lml - np.finfo(np.float32).eps)
        last_lml = lml
Esempio n. 29
0
class GP(BaseTuner):
    def __init__(self, tunables, gridding=0, r_minimum=2):
        """
        Extra args:
            r_minimum: the minimum number of past results this selector needs in
                order to use gaussian process for prediction. If not enough
                results are present during a fit(), subsequent calls to
                propose() will revert to uniform selection.
        """
        super(GP, self).__init__(tunables, gridding=gridding)
        self.r_minimum = r_minimum

    def fit(self, X, y):
        """ Use X and y to train a Gaussian process. """
        super(GP, self).fit(X, y)

        # skip training the process if there aren't enough samples
        if X.shape[0] < self.r_minimum:
            return

        self.gp = GaussianProcessRegressor(normalize_y=True)
        self.gp.fit(X, y)

    def predict(self, X):
        if self.X.shape[0] < self.r_minimum:
            # we probably don't have enough
            logger.warn('GP: not enough data, falling back to uniform sampler')
            return Uniform(self.tunables).predict(X)

        y, stdev = self.gp.predict(X, return_std=True)
        return np.array(list(zip(y, stdev)))

    def _acquire(self, predictions):
        """
        Predictions from the GP will be in the form (prediction, error).
        The default acquisition function returns the index with the highest
        predicted value, not factoring in error.
        """
        return np.argmax(predictions[:, 0])
Esempio n. 30
0
        def bo_(x_obs, y_obs, n_iter):
            if n_iter > 0:
                kernel = kernels.Matern() + kernels.WhiteKernel()
                gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=16)
                gp.fit(x_obs, 1-y_obs)

                a = a_EI(gp, x_obs=x_obs, y_obs=1-y_obs)

                argmax_f_x_ = x[np.argmax(a(x))]

                # heavy evaluation
                f_argmax_f_x_ = cross_validation(argmax_f_x_)

                y_ob = np.atleast_2d(mean_mean_validation_scores(f_argmax_f_x_)).T

                return f_argmax_f_x_ + bo_(
                    x_obs=np.vstack((x_obs, argmax_f_x_)),
                    y_obs=np.vstack((y_obs, y_ob)),
                    n_iter=n_iter-1,
                )

            else:
                return []
Esempio n. 31
0
def do_expt(seed):
    np.random.seed(seed)
    perm = np.random.permutation(nseq)
    perm = perm[:n_bo_init]
    Xinit = Xall[perm]
    yinit = yall[perm]

    rnd_solver = RandomDiscreteOptimizer(Xall, n_iter=n_bo_iter + n_bo_init)
    """
  # Embed sequence then pass to kernel.
  # We use Matern kernel 1.5 since this only assumes first-orer differentiability.
  kernel = ConstantKernel(1.0) * EmbedKernel(length_scale=1.0, nu=1.5,
                         embed_fn=lambda x: embedder.predict(x))
  gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise**2)
  acq_fn = expected_improvement
  n_seq = np.shape(Xall)[0]
  acq_solver =  EnumerativeDiscreteOptimizer(Xall, n_iter=n_seq)
  bo_embed_solver_slow = BayesianOptimizer(
      Xinit, yinit, gpr, acq_fn, acq_solver, n_iter=n_bo_iter)
  """

    kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=1.5)
    gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise**2)
    acq_fn = EI
    bo_oracle_embed_solver = BayesianOptimizerEmbedEnum(Xall,
                                                        oracle_embed_fn,
                                                        Xinit,
                                                        yinit,
                                                        gpr,
                                                        acq_fn,
                                                        n_iter=n_bo_iter)

    kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=1.5)
    gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise**2)
    acq_fn = EI
    bo_predictor_embed_solver = BayesianOptimizerEmbedEnum(Xall,
                                                           predictor_embed_fn,
                                                           Xinit,
                                                           yinit,
                                                           gpr,
                                                           acq_fn,
                                                           n_iter=n_bo_iter)

    kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=1.5)
    gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise**2)
    acq_fn = EI
    bo_super_embed_solver = BayesianOptimizerEmbedEnum(Xall,
                                                       super_embed_fn,
                                                       Xinit,
                                                       yinit,
                                                       gpr,
                                                       acq_fn,
                                                       n_iter=n_bo_iter)

    kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=1.5)
    gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise**2)
    acq_fn = EI
    bo_onehot_embed_solver = BayesianOptimizerEmbedEnum(Xall,
                                                        onehot_embed_fn,
                                                        Xinit,
                                                        yinit,
                                                        gpr,
                                                        acq_fn,
                                                        n_iter=n_bo_iter)
    """
  # Pass integers to kernel.
  kernel = ConstantKernel(1.0) * EmbedKernel(length_scale=1.0, nu=1.5,
                         embed_fn=lambda x: x)
  gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise**2)
  acq_fn = expected_improvement
  n_seq = 4**seq_len
  acq_solver =  EnumerativeStringOptimizer(seq_len, n_iter=n_seq)
  bo_int_solver = BayesianOptimizer(Xinit, yinit, gpr, acq_fn, acq_solver, n_iter=n_bo_iter)
  """

    methods = []
    methods.append((bo_oracle_embed_solver, 'BO-oracle-embed-enum'))
    methods.append((bo_predictor_embed_solver, 'BO-predictor_embed-enum'))
    methods.append((bo_super_embed_solver, 'BO-super-embed-enum'))
    methods.append((bo_onehot_embed_solver, 'BO-onehot-enum'))
    #methods.append((bo_int_solver, 'BO-int-enum'))
    methods.append((rnd_solver, 'RndSolver'))  # Always do random last

    ytrace = dict()
    for solver, name in methods:
        print("Running {}".format(name))
        time_start = time()
        solver.maximize(oracle)
        print('time spent by {} = {:0.3f}\n'.format(name, time() - time_start))
        ytrace[name] = np.maximum.accumulate(solver.val_history)

    plt.figure()
    styles = ['k-o', 'r:o', 'b--o', 'g-o', 'c:o', 'm--o', 'y-o']
    for i, tuple in enumerate(methods):
        style = styles[i]
        name = tuple[1]
        plt.plot(ytrace[name], style, label=name)
    plt.axvline(n_bo_init)
    plt.legend()
    plt.title("seed = {}".format(seed))
    plt.show()
Esempio n. 32
0
class BayesianOptimizer(BaseOptimizer):
    """
	optimize with bayesian optimizer
	"""
    def __init__(self, configFile, domain):
        """
		intialize
		"""
        defValues = {}
        defValues["opti.initial.model.training.size"] = (1000, None)
        defValues["opti.acquisition.samp.size"] = (100, None)
        defValues["opti.prob.acquisition.strategy"] = ("pi", None)
        defValues["opti.acquisition.lcb.mult"] = (2.0, None)

        super(BayesianOptimizer, self).__init__(configFile, defValues, domain)
        self.model = GaussianProcessRegressor()

    def run(self):
        """
		run optimizer
		"""
        assert Candidare.fixedSz, "BayesianOptimizer works only for fixed size solution"

        for sampler in self.compDataDistr:
            assert sampler.isNumeric(
            ), "BayesianOptimizer works only for numerical data"

        #inir=tial population and moel fit
        trSize = self.config.getIntConfig(
            "opti.initial.model.training.size")[0]
        features, targets = self.createSamples(trSize)
        self.model.fit(features, targets)

        #iterate
        acqSampSize = self.config.getIntConfig("opti.acquisition.samp.size")[0]
        prAcqStrategy = self.config.getIntConfig(
            "opti.prob.acquisition.strategy")[0]
        acqLcbMult = self.config.getFloatConfig(
            "opti.prob.acquisition.strategy")[0]
        for i in range(self.numIter):
            ofeature, otarget = optAcquire(features, targets, acqSampSize,
                                           prAcqStrategy, acqLcbMult)
            features = np.vstack((features, [ofeature]))
            targets = np.vstack((targets, [otarget]))
            self.model.fit(features, targets)

        ix = np.argmax(targets)

    def optAcquire(features, targets, acqSampSize, prAcqStrategy, acqLcbMult):
        """
		run optimizer
		"""
        mu = self.model.predict(features)
        best = min(mu)

        sfeatures, stargets = self.createSamples(acqSampSize)
        smu, sstd = self.model.predict(sfeatures, return_std=True)
        if prAcqStrategy == "pi":
            imp = best - smu
            z = imp / (sstd + 1E-9)
            scores = norm.cdf(z)
        elif prAcqStrategy == "ei":
            imp = best - smu
            z = imp / (sstd + 1E-9)
            scores = imp * norm.cdf(z) + sstd * norm.pdf(z)
        elif prAcqStrategy == "lcb":
            scores = smu - acqLcbMult * sstd
        else:
            raise ValueError(
                "invalid acquisition strategy for next best candidate")
        ix = np.argmax(scores)
        sfeature = sfeatures[ix]
        starget = stargets[ix]

        return (sfeature, starget)

    def createSamples(self, size):
        """
		sample features and targets
		"""
        features = list()
        targets = list()
        for i in range(size):
            cand = self.createCandidate()
            features.append(cand.getSolnAsFloat())
            targets.append(cand.cost)
        features = np.asarray(features)
        targets = np.asarray(targets).reshape(size, 1)
        return (features, targets)
    'weights': ['uniform', 'distance'],
    'p': np.arange(1, 2, 0.25)
}
dt_params = {
    'criterion': ['mse', 'friedman_mse', 'mae'],
    'max_depth': np.arange(1, 50, 5)
}

models_list = [('LR', LinearRegression(), {}),
               ('Ridge', Ridge(), ridge_params),
               ('Lasso', Lasso(), lasso_params),
               ('ElasticNet', ElasticNet(), elasticnet_params),
               ('SGDRegressor', SGDRegressor(), sgdregressor_params),
               ('SVR', SVR(), svr_params),
               ('KNN', KNeighborsRegressor(), knn_params),
               ('GaussianProcess', GaussianProcessRegressor(), {}),
               ('DTree', DecisionTreeRegressor(), dt_params)]

rmsle_scores = []
r2_scores = []
model_names = []
best_estimators = []

for name, model, model_params in list(models_list):
    print('-' * 100)
    print('Fitting ', name)
    model_names.append(name)
    model_grid = GridSearchCV(estimator=model,
                              param_grid=model_params,
                              scoring='neg_root_mean_squared_error',
                              verbose=0,
    # パラメータの取りうる範囲
    x_grid = np.atleast_2d(np.linspace(0, 10, 1001)[:1000]).T

    # 初期値として x=1, 9 の 2 点の探索をしておく.
    X = np.atleast_2d([1., 9.]).T
    y = blackbox_func(X).ravel()

    # Gaussian Processs Upper Confidence Bound (GP-UCB)アルゴリズム
    # --> 収束するまで繰り返す(収束条件などチューニングポイント)
    n_iteration = 50
    for i in range(n_iteration):

        # 既に分かっている値でガウス過程フィッティング
        # --> カーネル関数やパラメータはデフォルトにしています(チューニングポイント)
        gp = GaussianProcessRegressor()
        gp = KNeighborsRegressor(n_neighbors=2)
        gp.fit(X, y)

        # 事後分布が求まる
        posterior_mean = gp.predict(x_grid)
        #        posterior_sig = dist_knn(X, x_grid)
        posterior_sig = dist_knn(X, x_grid, min([i + 1, 5]))

        # 目的関数を最大化する x を次のパラメータとして選択する
        # --> βを大きくすると探索重視(初期は大きくし探索重視しイテレーションに同期して減衰させ活用を重視させるなど、チューニングポイント)
        idx = acq_ucb(posterior_mean, posterior_sig, beta=100.0)
        x_next = x_grid[idx]

        plot(x_grid,
             y,
def generate_gp(points,
                data,
                hp0,
                kernel_type='squaredexponential',
                fixed=False,
                hyper_limits=None,
                n_restarts_optimizer=9):
    """Gaussian Process for ndim dimensional parameter space.

    Parameters
    ----------
    points : array of shape (npoints, ndim).
        Coordinates in paramete space of sampled data.
    data : array of shape (npoints,).
        Data at each of the sampled points.
    hp0 : array of shape (ndim+2,)
        Initial hyperparameter guess for optimizer.
        Order is (sigma_f, ls_0, ls_1, ..., sigma_n).
    kernel_type : 'squaredexponential', 'matern32', 'matern52'
    limits : array of shape (ndim+2, 2)
        Lower and upper bounds on the value of each hyperparameter.
    n_restarts_optimizer : int
        Number of random points in the hyperparameter space to restart optimization
        routine for searching for the maximum log-likelihood.
        Total number of optimizations will be n_restarts_optimizer+1.

    Returns
    -------
    gp : GaussianProcessRegressor
    """

    # ******* Generate kernel *******

    # ConstantKernel = c multiplies *all* elements of kernel matrix by c
    # If you want to specify sigma_f (where c=sigma_f^2) then use
    # sigma_f^2 and bounds (sigma_flow^2, sigma_fhigh^2)

    # WhiteKernel = c \delta_{ij} multiplies *diagonal* elements by c
    # If you want to specify sigma_n (where c=sigma_n^2) then use
    # sigma_n^2 and bounds (sigma_nlow^2, sigma_nhigh^2)

    # radial part uses the length scales [l_0, l_1, ...] not [l_0^2, l_1^2, ...]

    # Constant and noise term
    if fixed == True:
        const = ConstantKernel(hp0[0]**2)
        noise = WhiteKernel(hp0[-1]**2)
    elif fixed == False:
        const = ConstantKernel(hp0[0]**2, hyper_limits[0]**2)
        noise = WhiteKernel(hp0[-1]**2, hyper_limits[-1]**2)
    else:
        raise Exception, "'fixed' must be True or False."

    # Radial term
    if fixed == True:
        if kernel_type == 'squaredexponential':
            radial = RBF(hp0[1:-1])
        elif kernel_type == 'matern32':
            radial = Matern(hp0[1:-1], nu=1.5)
        elif kernel_type == 'matern52':
            radial = Matern(hp0[1:-1], nu=2.5)
        else:
            raise Exception, "Options for kernel_type are: 'squaredexponential', 'matern32', 'matern52'."
    elif fixed == False:
        if kernel_type == 'squaredexponential':
            radial = RBF(hp0[1:-1], hyper_limits[1:-1])
        elif kernel_type == 'matern32':
            radial = Matern(hp0[1:-1], hyper_limits[1:-1], nu=1.5)
        elif kernel_type == 'matern52':
            radial = Matern(hp0[1:-1], hyper_limits[1:-1], nu=2.5)
        else:
            raise Exception, "Options for kernel_type are: 'squaredexponential', 'matern32', 'matern52'."
    else:
        raise Exception, "'fixed' must be True or False."

    kernel = const * radial + noise

    # ******* Initialize GaussianProcessRegressor and optimize hyperparameters if not fixed *******

    if fixed == True:
        gp = GaussianProcessRegressor(kernel=kernel, optimizer=None)
        # Supply the points and data, but don't optimize the hyperparameters
        gp.fit(points, data)
        return gp
    elif fixed == False:
        gp = GaussianProcessRegressor(
            kernel=kernel, n_restarts_optimizer=n_restarts_optimizer)
        # Optimize the hyperparameters by maximizing the log-likelihood
        gp.fit(points, data)
        return gp
    else:
        raise Exception, "'fixed' must be True or False."
Esempio n. 36
0
def HGPfunc(x, y, y_gn, plot, h1low, h1high, h2low, h2high, h1low_z, h1high_z,
            h2low_z, h2high_z):
    y = y.reshape(-1, 1)
    y_gn = y_gn.reshape(-1, 1)
    x = x.reshape(-1, 1)
    if plot:
        plt.plot(x, y, '+')
        plt.xlabel("Pch (dBm)")
        plt.ylabel("SNR (dB)")
        plt.savefig('Adataset.png', dpi=200)
        plt.show()
    n = np.size(x)
    scaler = StandardScaler().fit(y)
    y = scaler.transform(y)

    #scaler_gn = StandardScaler().fit(y_gn)
    #y_gn = scaler_gn.transform(y_gn)
    def sqexp(X, Y, k1, k2):
        X = np.atleast_2d(X)
        if Y is None:
            dists = pdist(X / k2, metric='sqeuclidean')
            K = np.exp(-.5 * dists)
            # convert from upper-triangular matrix to square matrix
            K = squareform(K)
            np.fill_diagonal(K, 1)
            # return gradient
            K_gradient = (K * squareform(dists))[:, :, np.newaxis]
            #K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \  # anisotropic case, see https://github.com/scikit-learn/scikit-learn/blob/95d4f0841d57e8b5f6b2a570312e9d832e69debc/sklearn/gaussian_process/kernels.py
            #            / (k2 ** 2)
            #K_gradient *= K[..., np.newaxis]
            return k1 * K, K_gradient
        else:
            dists = cdist(X / k2, Y / k2, metric='sqeuclidean')
            K = np.exp(-.5 * dists)
            return k1 * K

    # heteroscedastic versions of functions
    global Kyinvh
    Kyinvh = 0.0
    global Kfh
    Kfh = 0.0

    def lmlh(params, y, R, y_gn):
        #print(params)  # show progress of fit
        [k1, k2] = params
        global Kfh
        Kfh = sqexp(x, None, k1, k2**0.5)[0]
        #print(np.size(Kfh))
        Ky = Kfh + R  # calculate initial kernel with noise
        global Kyinvh
        Kyinvh = inv(Ky)
        return -(-0.5 * mul(mul(T(y), Kyinvh), y) - 0.5 * np.log(
            (det(Ky))) - 0.5 * n * np.log(2 * np.pi)) + -(
                -0.5 * mul(mul(T(y_gn), Kyinvh), y_gn) - 0.5 * np.log(
                    (det(Ky))) - 0.5 * n * np.log(2 * np.pi)
            )  # marginal likelihood - (5.8)

    def lmlgh(params, y, R, y_gn):
        k1, k2 = params
        al = mul(Kyinvh, y)
        al_gn = mul(Kyinvh, y_gn)
        dKdk1 = Kfh * (1 / k1)
        dKdk2 = sqexp(x, None, k1, k2**0.5)[1].reshape(n, n)
        lmlg1 = -(0.5 * np.trace(mul(mul(al, T(al)) - Kyinvh, dKdk1))) + -(
            0.5 * np.trace(mul(mul(al_gn, T(al_gn)) - Kyinvh, dKdk1)))
        lmlg2 = -(0.5 * np.trace(mul(mul(al, T(al)) - Kyinvh, dKdk2))) + -(
            0.5 * np.trace(mul(mul(al_gn, T(al_gn)) - Kyinvh, dKdk2)))
        return np.ndarray((2, ), buffer=np.array([lmlg1, lmlg2]), dtype=float)

    def GPRfith(xs, k1, k2, R, Rs):
        Ky = sqexp(x, None, k1, k2**0.5)[0] + R
        Ks = sqexp(xs, x, k1, k2**0.5)
        Kss = sqexp(xs, None, k1, k2)[0]
        L = cholesky(Ky)
        al = solve(T(L), solve(L, y))
        fmst = mul(Ks, al)
        varfmst = np.empty([n, 1])
        for i in range(np.size(xs)):
            v = solve(L, T(Ks[:, i]))
            varfmst[i] = Kss[i, i] - mul(T(v), v) + Rs[i, i]
        lmlopt = -0.5 * mul(T(y), al) - np.trace(
            np.log(L)) - 0.5 * n * np.log(2 * np.pi)
        #return fmst, varfmst[::-1], lmlopt
        return fmst, varfmst, lmlopt

    def hypopth(y, numrestarts, R, y_gn):
        numh = 2  # number of hyperparameters in kernel function
        k1s4 = np.empty([numrestarts, 1])
        k2s4 = np.empty([numrestarts, 1])
        for i in range(numrestarts):
            #k1is4 = np.random.uniform(1e-2,1e3)
            #k2is4 = np.random.uniform(1e-1,1e3)
            k1is4 = np.random.uniform(h1low, h1high)
            k2is4 = np.random.uniform(h2low, h2high)
            kis4 = np.ndarray((numh, ),
                              buffer=np.array([k1is4, k2is4]),
                              dtype=float)
            s4res = minimize(lmlh,
                             kis4,
                             args=(y, R, y_gn),
                             method='L-BFGS-B',
                             jac=lmlgh,
                             bounds=((h1low, h1high), (h2low, h2high)),
                             options={'maxiter': 1e2})
            step4res = []
            if s4res.success:
                step4res.append(s4res.x)
                print("successful k1:" + str(k1is4))
                print("successful k2: " + str(k2is4))
            else:
                print("error " + str(k1is4))
                print("error " + str(k2is4))
                #raise ValueError(s4res.message)
                #k1is4 = np.random.uniform(1e-2,1e3)
                #k2is4 = np.random.uniform(2e-1,1e3)
                k1is4 = np.random.uniform(h1low, h1high)
                k2is4 = np.random.uniform(h2low, h2high)
                print("error in hypopth() - reinitialising hyperparameters")
                continue
            k1s4[i] = step4res[0][0]
            k2s4[i] = step4res[0][1]
        lmltest = [
            lmlh([k1s4[i], k2s4[i]], y, R, y_gn) for i in range(numrestarts)
        ]
        #k1f = k1s4[np.argmin(lmltest)]
        #k2f = k2s4[np.argmin(lmltest)]
        k1f = k1s4[np.argmax(lmltest)]
        k2f = k2s4[np.argmax(lmltest)]
        #lml(params,y,sig)
        return k1f, k2f

    def hetloopSK(fmst, varfmst, numiters, numrestarts):
        s = 200
        #k1is3, k2is3, k1is4,k2is4  =  np.random.uniform(1e-2,1e2,4)
        MSE = np.empty([numiters, 1])
        NLPD = np.empty([numiters, 1])
        fmstf = np.empty([numiters, n])
        varfmstf = np.empty([numiters, n])
        lmloptf = np.empty([numiters, 1])
        rf = np.empty([numiters, n])
        i = 0
        while i < numiters:

            breakwhile = False
            # Step 2: estimate empirical noise levels z
            #k1is4,k2is4  = np.random.uniform(1e-2,1e2,2)
            #k1is3, k1is4  =  np.random.uniform(1e-2,1e2,2)
            #k2is3, k2is4  =  np.random.uniform(1e-1,1e2,2)
            k1is3 = np.random.uniform(h1low_z, h1high_z, 1)
            k2is3 = np.random.uniform(h2low_z, h2high_z, 1)
            z = np.empty([n, 1])
            for j in range(n):
                #np.random.seed()
                normdraw = normal(fmst[j], varfmst[j]**0.5, s).reshape(s, 1)
                z[j] = np.log((1 / s) * 0.5 * sum((y[j] - normdraw)**2))
                if math.isnan(z[j]):  # True for NaN values
                    breakwhile = True
                    break
            if breakwhile:
                print("Nan value in z -- skipping iter " + str(i))
                i = i + 1
                continue
            #  Step 3: estimate GP2 on D' - (x,z)
            kernel2 = C(k1is3,
                        (h1low_z, h1high_z)) * RBF(k2is3, (h2low_z, h2high_z))
            gpr2 = GaussianProcessRegressor(kernel=kernel2,
                                            n_restarts_optimizer=numrestarts,
                                            normalize_y=False,
                                            alpha=np.var(z))

            gpr2.fit(x, z)
            ystar2, sigma2 = gpr2.predict(x, return_std=True)
            sigma2 = (sigma2**2 + 1)**0.5
            # Step 4: train heteroscedastic GP3 using predictive mean of G2 to predict log noise levels r
            r = exp(ystar2)
            R = r * np.identity(n)
            k1s4, k2s4 = hypopth(y, numrestarts, R,
                                 y_gn)  # needs to be modified
            fmst4, varfmst4, lmlopt4 = GPRfith(x, k1s4, k2s4, R,
                                               R)  # needs to be modified
            # test for convergence
            MSE[i] = (1 / n) * sum(((y - fmst4)**2) / np.var(y))
            #NLPD[i] = sum([(1/n)*(-np.log(norm.pdf(x[j], fmst4[j], varfmst4[j]**0.5))) for j in range(n) ])
            nlpdarg = np.zeros([n, 1])
            #nlpdtest = np.zeros([n,1])
            for k in range(n):
                nlpdarg[k] = -np.log10(
                    norm.pdf(x[k], fmst4[k], varfmst4[k]**0.5))
                #nlpdtest[k] = norm.pdf(x[k], fmst4[k], varfmst4[k]**0.5)
            #print("mean NLPD log arg " + str(nlpdtest) )
            #test3[k] = -np.log(norm.pdf(x[k], fmst[k], varfmst[k]**0.5))
            NLPD[i] = sum(nlpdarg) * (1 / n)
            print("MSE = " + str(MSE[i]))
            print("NLPD = " + str(NLPD[i]))
            print("finished iteration " + str(i + 1))
            fmstf[i, :] = fmst4.reshape(n)
            varfmstf[i, :] = varfmst4.reshape(n)
            lmloptf[i] = lmlopt4
            fmst = fmst4
            varfmst = varfmst4
            rf[i, :] = r.reshape(n)
            #k1is3 = k1s4
            #k2is3 = k2s4
            i = i + 1
        return fmstf, varfmstf, lmloptf, MSE, rf, NLPD  #  , NLPD

    numiters = 10
    numrestarts = 20

    #kernel1 = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-3, 1e3)) + W(1.0, (1e-5, 1e5))
    #gpr1 = GaussianProcessRegressor(kernel=kernel1, n_restarts_optimizer = 0, normalize_y=True)
    kernel1 = C(1.0, (h1low, h1high)) * RBF(1.0, (h2low, h2high))
    gpr1 = GaussianProcessRegressor(kernel=kernel1,
                                    n_restarts_optimizer=numrestarts,
                                    normalize_y=False,
                                    alpha=np.var(y))
    gpr1.fit(x, y)
    ystar1, sigma1 = gpr1.predict(x, return_std=True)
    var1 = (sigma1**2 + np.var(y))
    #sigma1 = np.reshape(sigma1,(np.size(sigma1), 1))

    start_time = time.time()
    fmstf, varfmstf, lmlopt, mse, _, NLPD = hetloopSK(ystar1, var1, numiters,
                                                      numrestarts)
    duration = time.time() - start_time

    ind = numiters - 1
    #ind =
    fmst4 = fmstf[ind]
    varfmst4 = varfmstf[ind]

    sigs4 = varfmst4**0.5
    fmstps4 = fmst4 + sigs4
    fmst4i = scaler.inverse_transform(fmst4)
    fmstps4i = scaler.inverse_transform(fmstps4)

    print("HGP fitting duration: " + str(duration))

    return fmst4i, fmstps4i, lmlopt, mse, NLPD
import numpy as np
import pandas as pd
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PowerTransformer
from tpot.builtins import ZeroCount
from tpot.export_utils import set_param_recursive

# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE',
                        sep='COLUMN_SEPARATOR',
                        dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
            train_test_split(features, tpot_data['target'], random_state=123)

# Average CV score on the training set was: 0.9858937143431208
exported_pipeline = make_pipeline(
    ZeroCount(), PowerTransformer(),
    GaussianProcessRegressor(kernel=Matern(length_scale=2.9000000000000004,
                                           nu=1.5),
                             n_restarts_optimizer=155,
                             normalize_y=True))
# Fix random state for all the steps in exported pipeline
set_param_recursive(exported_pipeline.steps, 'random_state', 123)

exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
Esempio n. 38
0
def test_y_multioutput():
    # Test that GPR can deal with multi-dimensional target values
    y_2d = np.vstack((y, y * 2)).T

    # Test for fixed kernel that first dimension of 2d GP equals the output
    # of 1d GP and that second dimension is twice as large
    kernel = RBF(length_scale=1.0)

    gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False)
    gpr.fit(X, y)

    gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False)
    gpr_2d.fit(X, y_2d)

    y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True)
    y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True)
    _, y_cov_1d = gpr.predict(X2, return_cov=True)
    _, y_cov_2d = gpr_2d.predict(X2, return_cov=True)

    assert_almost_equal(y_pred_1d, y_pred_2d[:, 0])
    assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2)

    # Standard deviation and covariance do not depend on output
    for target in range(y_2d.shape[1]):
        assert_almost_equal(y_std_1d, y_std_2d[..., target])
        assert_almost_equal(y_cov_1d, y_cov_2d[..., target])

    y_sample_1d = gpr.sample_y(X2, n_samples=10)
    y_sample_2d = gpr_2d.sample_y(X2, n_samples=10)

    assert y_sample_1d.shape == (5, 10)
    assert y_sample_2d.shape == (5, 2, 10)
    # Only the first target will be equal
    assert_almost_equal(y_sample_1d, y_sample_2d[:, 0, :])

    # Test hyperparameter optimization
    for kernel in kernels:
        gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        gpr.fit(X, y)

        gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        gpr_2d.fit(X, np.vstack((y, y)).T)

        assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4)
Esempio n. 39
0
def test_warning_bounds():
    kernel = RBF(length_scale_bounds=[1e-5, 1e-3])
    gpr = GaussianProcessRegressor(kernel=kernel)
    warning_message = (
        "The optimal value found for dimension 0 of parameter "
        "length_scale is close to the specified upper bound "
        "0.001. Increasing the bound and calling fit again may "
        "find a better value."
    )
    with pytest.warns(ConvergenceWarning, match=warning_message):
        gpr.fit(X, y)

    kernel_sum = WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(
        length_scale_bounds=[1e3, 1e5]
    )
    gpr_sum = GaussianProcessRegressor(kernel=kernel_sum)
    with pytest.warns(None) as record:
        with warnings.catch_warnings():
            # scipy 1.3.0 uses tostring which is deprecated in numpy
            warnings.filterwarnings("ignore", "tostring", DeprecationWarning)
            gpr_sum.fit(X, y)

    assert len(record) == 2
    assert (
        record[0].message.args[0]
        == "The optimal value found for "
        "dimension 0 of parameter "
        "k1__noise_level is close to the "
        "specified upper bound 0.001. "
        "Increasing the bound and calling "
        "fit again may find a better value."
    )

    assert (
        record[1].message.args[0]
        == "The optimal value found for "
        "dimension 0 of parameter "
        "k2__length_scale is close to the "
        "specified lower bound 1000.0. "
        "Decreasing the bound and calling "
        "fit again may find a better value."
    )

    X_tile = np.tile(X, 2)
    kernel_dims = RBF(length_scale=[1.0, 2.0], length_scale_bounds=[1e1, 1e2])
    gpr_dims = GaussianProcessRegressor(kernel=kernel_dims)

    with pytest.warns(None) as record:
        with warnings.catch_warnings():
            # scipy 1.3.0 uses tostring which is deprecated in numpy
            warnings.filterwarnings("ignore", "tostring", DeprecationWarning)
            gpr_dims.fit(X_tile, y)

    assert len(record) == 2
    assert (
        record[0].message.args[0]
        == "The optimal value found for "
        "dimension 0 of parameter "
        "length_scale is close to the "
        "specified lower bound 10.0. "
        "Decreasing the bound and calling "
        "fit again may find a better value."
    )

    assert (
        record[1].message.args[0]
        == "The optimal value found for "
        "dimension 1 of parameter "
        "length_scale is close to the "
        "specified lower bound 10.0. "
        "Decreasing the bound and calling "
        "fit again may find a better value."
    )
Esempio n. 40
0
def test_gpr_fit_error(params, TypeError, err_msg):
    """Check that expected error are raised during fit."""
    gpr = GaussianProcessRegressor(**params)
    with pytest.raises(TypeError, match=err_msg):
        gpr.fit(X, y)
Esempio n. 41
0
def test_lml_precomputed(kernel):
    # Test that lml of optimized kernel is stored correctly.
    gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
    assert gpr.log_marginal_likelihood(gpr.kernel_.theta) == pytest.approx(
        gpr.log_marginal_likelihood()
    )

# ----------------------------------------------------------------------
#  First the noiseless case
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T

# Observations
y = f(X).ravel()

# Mesh the input space for evaluations of the real function, the prediction and
# its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

# Instantiate a Gaussian Process model
kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)

# Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

# Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, sigma = gp.predict(x, return_std=True)

# Plot the function, the prediction and the 95% confidence interval based on
# the MSE
plt.figure()
plt.plot(x, f(x), 'r:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'r.', markersize=10, label='Observations')
plt.plot(x, y_pred, 'b-', label='Prediction')
plt.fill(np.concatenate([x, x[::-1]]),
         np.concatenate(
class BayesianOptimization(Observable):
    """
    This class takes the function to optimize as well as the parameters bounds
    in order to find which values for the parameters yield the maximum value
    using bayesian optimization.

    Parameters
    ----------
    f: function
        Function to be maximized.

    pbounds: dict
        Dictionary with parameters names as keys and a tuple with minimum
        and maximum values.

    random_state: int or numpy.random.RandomState, optional(default=None)
        If the value is an integer, it is used as the seed for creating a
        numpy.random.RandomState. Otherwise the random state provieded it is used.
        When set to None, an unseeded random state is generated.

    verbose: int, optional(default=2)
        The level of verbosity.

    bounds_transformer: DomainTransformer, optional(default=None)
        If provided, the transformation is applied to the bounds.

    Methods
    -------
    probe()
        Evaluates the function on the given points.
        Can be used to guide the optimizer.

    maximize()
        Tries to find the parameters that yield the maximum value for the
        given function.

    set_bounds()
        Allows changing the lower and upper searching bounds
    """
    def __init__(self, f, pbounds, random_state=None, verbose=2,
                 bounds_transformer=None):
        self._random_state = ensure_rng(random_state)

        # Data structure containing the function to be optimized, the bounds of
        # its domain, and a record of the evaluations we have done so far
        self._space = TargetSpace(f, pbounds, random_state)

        self._queue = Queue()

        # Internal GP regressor
        self._gp = GaussianProcessRegressor(
            kernel=Matern(nu=2.5),
            alpha=1e-6,
            normalize_y=True,
            n_restarts_optimizer=5,
            random_state=self._random_state,
        )

        self._verbose = verbose
        self._bounds_transformer = bounds_transformer
        if self._bounds_transformer:
            if hasattr(self._bounds_transformer, "bounds")==False:
                #raise TypeError('test')
                try:
                    self._bounds_transformer.initialize(self._space)
                except (AttributeError, TypeError):
                    raise TypeError('The transformer must be an instance of '
                                    'DomainTransformer')

        super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS)

    @property
    def space(self):
        return self._space

    @property
    def max(self):
        return self._space.max()

    @property
    def res(self):
        return self._space.res()

    def register(self, params, target):
        """Expect observation with known target"""
        self._space.register(params, target)
        self.dispatch(Events.OPTIMIZATION_STEP)

    def probe(self, params, lazy=True):
        """
        Evaluates the function on the given points. Useful to guide the optimizer.

        Parameters
        ----------
        params: dict or list
            The parameters where the optimizer will evaluate the function.

        lazy: bool, optional(default=True)
            If True, the optimizer will evaluate the points when calling
            maximize(). Otherwise it will evaluate it at the moment.
        """
        if lazy:
            self._queue.add(params)
        else:
            self._space.probe(params)
            self.dispatch(Events.OPTIMIZATION_STEP)

    def suggest(self, utility_function):
        """Most promising point to probe next"""
        if len(self._space) == 0:
            return self._space.array_to_params(self._space.random_sample())

        # Sklearn's GP throws a large number of warnings at times, but
        # we don't really need to see them here.
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self._gp.fit(self._space.params, self._space.target)

        # Finding argmax of the acquisition function.
        suggestion = acq_max(
            ac=utility_function.utility,
            gp=self._gp,
            y_max=self._space.target.max(),
            bounds=self._space.bounds,
            random_state=self._random_state
        )

        return self._space.array_to_params(suggestion)

    def _prime_queue(self, init_points):
        """Make sure there's something in the queue at the very beginning."""
        if self._queue.empty and self._space.empty:
            init_points = max(init_points, 1)

        for _ in range(init_points):
            self._queue.add(self._space.random_sample())

    def _prime_subscriptions(self):
        if not any([len(subs) for subs in self._events.values()]):
            _logger = _get_default_logger(self._verbose)
            self.subscribe(Events.OPTIMIZATION_START, _logger)
            self.subscribe(Events.OPTIMIZATION_STEP, _logger)
            self.subscribe(Events.OPTIMIZATION_END, _logger)

    def maximize(self,
                 init_points=5,
                 n_iter=25,
                 acq='ucb',
                 kappa=2.576,
                 kappa_decay=1,
                 kappa_decay_delay=0,
                 xi=0.0,
                 **gp_params):
        """
        Probes the target space to find the parameters that yield the maximum
        value for the given function.

        Parameters
        ----------
        init_points : int, optional(default=5)
            Number of iterations before the explorations starts the exploration
            for the maximum.

        n_iter: int, optional(default=25)
            Number of iterations where the method attempts to find the maximum
            value.

        acq: {'ucb', 'ei', 'poi'}
            The acquisition method used.
                * 'ucb' stands for the Upper Confidence Bounds method
                * 'ei' is the Expected Improvement method
                * 'poi' is the Probability Of Improvement criterion.

        kappa: float, optional(default=2.576)
            Parameter to indicate how closed are the next parameters sampled.
                Higher value = favors spaces that are least explored.
                Lower value = favors spaces where the regression function is the
                highest.

        kappa_decay: float, optional(default=1)
            `kappa` is multiplied by this factor every iteration.

        kappa_decay_delay: int, optional(default=0)
            Number of iterations that must have passed before applying the decay
            to `kappa`.

        xi: float, optional(default=0.0)
            [unused]
        """
        self._prime_subscriptions()
        self.dispatch(Events.OPTIMIZATION_START)
        self._prime_queue(init_points)
        self.set_gp_params(**gp_params)

        util = UtilityFunction(kind=acq,
                               kappa=kappa,
                               xi=xi,
                               kappa_decay=kappa_decay,
                               kappa_decay_delay=kappa_decay_delay)
        iteration = 0
        while not self._queue.empty or iteration < n_iter:
            try:
                x_probe = next(self._queue)
            except StopIteration:
                util.update_params()
                x_probe = self.suggest(util)
                iteration += 1

            self.probe(x_probe, lazy=False)

            if self._bounds_transformer:
                self.set_bounds(
                    self._bounds_transformer.transform(self._space))

        self.dispatch(Events.OPTIMIZATION_END)

    def set_bounds(self, new_bounds):
        """
        A method that allows changing the lower and upper searching bounds

        Parameters
        ----------
        new_bounds : dict
            A dictionary with the parameter name and its new bounds
        """
        self._space.set_bounds(new_bounds)

    def set_gp_params(self, **params):
        """Set parameters to the internal Gaussian Process Regressor"""
        self._gp.set_params(**params)
Esempio n. 44
0
train_labels = feature_matrices['train_labels']
train_values = feature_matrices['train_values']
train_targets = feature_matrices['train_targets']
test_labels = feature_matrices['test_labels']
test_values = feature_matrices['test_values']
test_targets = feature_matrices['test_targets']
n_features = train_values.shape[1]

# Model Specific Information
# -----------------------
lbound = 1e-2
rbound = 1e1
n_restarts = 25
kernel = C(1.0, (lbound, rbound)) * Matern(n_features * [1], (lbound, rbound),
                                           nu=2.5)
gp = GPR(kernel=kernel, n_restarts_optimizer=n_restarts)
gp.fit(train_values, train_targets)

test_model, sigma2_pred_test = gp.predict(test_values, return_std=True)
train_model, sigma2_pred_train = gp.predict(train_values, return_std=True)
# -----------------------

# Undo normalization in FP generation
test_model = np.multiply(test_model, std_target) + mean_target
sigma2_pred_test = np.multiply(sigma2_pred_test, std_target)  # GP Specific
test_targets = np.multiply(test_targets, std_target) + mean_target

train_model = np.multiply(train_model, std_target) + mean_target
sigma2_pred_train = np.multiply(sigma2_pred_train, std_target)  # GP Specific
train_targets = np.multiply(train_targets, std_target) + mean_target
Esempio n. 45
0
ran = RANSACRegressor()
tsr = TheilSenRegressor(random_state=42)
br = BayesianRidge(n_iter=300, tol=0.001)
bgm = BayesianGaussianMixture()
knr = KNeighborsRegressor(n_neighbors=5)
rnr = RadiusNeighborsRegressor(radius=1.0)
pls = PLSRegression(n_components=1)
gnb = GaussianNB()
mnb = MultinomialNB()
svl = SVR(kernel='linear')
svr = SVR()
las = Lasso()
en = ElasticNet()
rr = Ridge()
kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)

estimators = {
    'LR ': lr,
    'DTR': dtr,
    'RFR': rfr,
    'OMP': omp,
    'RAN': ran,
    'BR ': br,
    'BGM': bgm,
    'KNR': knr,
    'RNR': rnr,
    'PLS': pls,
    'SVL': svl,
    'SVR': svr,
    'LAS': las,
Esempio n. 46
0
def test_y_normalization(kernel):
    """
    Test normalization of the target values in GP

    Fitting non-normalizing GP on normalized y and fitting normalizing GP
    on unnormalized y should yield identical results. Note that, here,
    'normalized y' refers to y that has been made zero mean and unit
    variance.

    """

    y_mean = np.mean(y)
    y_std = np.std(y)
    y_norm = (y - y_mean) / y_std

    # Fit non-normalizing GP on normalized y
    gpr = GaussianProcessRegressor(kernel=kernel)
    gpr.fit(X, y_norm)

    # Fit normalizing GP on unnormalized y
    gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
    gpr_norm.fit(X, y)

    # Compare predicted mean, std-devs and covariances
    y_pred, y_pred_std = gpr.predict(X2, return_std=True)
    y_pred = y_pred * y_std + y_mean
    y_pred_std = y_pred_std * y_std
    y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True)

    assert_almost_equal(y_pred, y_pred_norm)
    assert_almost_equal(y_pred_std, y_pred_std_norm)

    _, y_cov = gpr.predict(X2, return_cov=True)
    y_cov = y_cov * y_std**2
    _, y_cov_norm = gpr_norm.predict(X2, return_cov=True)

    assert_almost_equal(y_cov, y_cov_norm)
Esempio n. 47
0
    def hetloopSK(fmst, varfmst, numiters, numrestarts):
        s = 200
        #k1is3, k2is3, k1is4,k2is4  =  np.random.uniform(1e-2,1e2,4)
        MSE = np.empty([numiters, 1])
        NLPD = np.empty([numiters, 1])
        fmstf = np.empty([numiters, n])
        varfmstf = np.empty([numiters, n])
        lmloptf = np.empty([numiters, 1])
        rf = np.empty([numiters, n])
        i = 0
        while i < numiters:

            breakwhile = False
            # Step 2: estimate empirical noise levels z
            #k1is4,k2is4  = np.random.uniform(1e-2,1e2,2)
            #k1is3, k1is4  =  np.random.uniform(1e-2,1e2,2)
            #k2is3, k2is4  =  np.random.uniform(1e-1,1e2,2)
            k1is3 = np.random.uniform(h1low_z, h1high_z, 1)
            k2is3 = np.random.uniform(h2low_z, h2high_z, 1)
            z = np.empty([n, 1])
            for j in range(n):
                #np.random.seed()
                normdraw = normal(fmst[j], varfmst[j]**0.5, s).reshape(s, 1)
                z[j] = np.log((1 / s) * 0.5 * sum((y[j] - normdraw)**2))
                if math.isnan(z[j]):  # True for NaN values
                    breakwhile = True
                    break
            if breakwhile:
                print("Nan value in z -- skipping iter " + str(i))
                i = i + 1
                continue
            #  Step 3: estimate GP2 on D' - (x,z)
            kernel2 = C(k1is3,
                        (h1low_z, h1high_z)) * RBF(k2is3, (h2low_z, h2high_z))
            gpr2 = GaussianProcessRegressor(kernel=kernel2,
                                            n_restarts_optimizer=numrestarts,
                                            normalize_y=False,
                                            alpha=np.var(z))

            gpr2.fit(x, z)
            ystar2, sigma2 = gpr2.predict(x, return_std=True)
            sigma2 = (sigma2**2 + 1)**0.5
            # Step 4: train heteroscedastic GP3 using predictive mean of G2 to predict log noise levels r
            r = exp(ystar2)
            R = r * np.identity(n)
            k1s4, k2s4 = hypopth(y, numrestarts, R,
                                 y_gn)  # needs to be modified
            fmst4, varfmst4, lmlopt4 = GPRfith(x, k1s4, k2s4, R,
                                               R)  # needs to be modified
            # test for convergence
            MSE[i] = (1 / n) * sum(((y - fmst4)**2) / np.var(y))
            #NLPD[i] = sum([(1/n)*(-np.log(norm.pdf(x[j], fmst4[j], varfmst4[j]**0.5))) for j in range(n) ])
            nlpdarg = np.zeros([n, 1])
            #nlpdtest = np.zeros([n,1])
            for k in range(n):
                nlpdarg[k] = -np.log10(
                    norm.pdf(x[k], fmst4[k], varfmst4[k]**0.5))
                #nlpdtest[k] = norm.pdf(x[k], fmst4[k], varfmst4[k]**0.5)
            #print("mean NLPD log arg " + str(nlpdtest) )
            #test3[k] = -np.log(norm.pdf(x[k], fmst[k], varfmst[k]**0.5))
            NLPD[i] = sum(nlpdarg) * (1 / n)
            print("MSE = " + str(MSE[i]))
            print("NLPD = " + str(NLPD[i]))
            print("finished iteration " + str(i + 1))
            fmstf[i, :] = fmst4.reshape(n)
            varfmstf[i, :] = varfmst4.reshape(n)
            lmloptf[i] = lmlopt4
            fmst = fmst4
            varfmst = varfmst4
            rf[i, :] = r.reshape(n)
            #k1is3 = k1s4
            #k2is3 = k2s4
            i = i + 1
        return fmstf, varfmstf, lmloptf, MSE, rf, NLPD  #  , NLPD
Esempio n. 48
0
def test_no_optimizer():
    # Test that kernel parameters are unmodified when optimizer is None.
    kernel = RBF(1.0)
    gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y)
    assert np.exp(gpr.kernel_.theta) == 1.0
Esempio n. 49
0
def Regression(train_data, train_solution, test_data, test_solution, method):
    ## Fix Data Structure ##
    train_data = train_data.values
    train_solution = train_solution.values
    test_data = test_data.values
    test_solution = test_solution.values

    ## List of Method Options with Initialization ##
    if method == 'lin_reg':  # linear regression
        from sklearn.linear_model import LinearRegression
        reg = LinearRegression()
    elif method == 'ply_reg':  # polynomial regression
        from sklearn.linear_model import LinearRegression
        reg = LinearRegression()
        poly_features = PolynomialFeatures(degree=2)
    elif method == 'rdg_reg':  # ridge regression
        from sklearn.linear_model import Ridge
        reg = Ridge()
    elif method == 'lso_reg':  # lasso regression
        from sklearn.linear_model import Lasso
        reg = Lasso(alpha=0.00001)
    elif method == 'ela_net':  # elastic net regression
        from sklearn.linear_model import ElasticNet
        reg = ElasticNet()
    elif method == 'svr_lin':  # SVM regression
        from sklearn.svm import LinearSVR
        reg = LinearSVR(epsilon=0.01, max_iter=10000)
    elif method == 'svr_2nd':  # SVR regression
        from sklearn.svm import SVR
        reg = SVR(kernel='poly', degree=2, epsilon=0.01)  #C=100
    elif method == 'svr_3rd':  # SVR regression
        from sklearn.svm import SVR
        reg = SVR(kernel='poly', degree=3, epsilon=0.01)  #C=100
    elif method == 'dcn_tre':  # decision tree
        from sklearn.tree import DecisionTreeRegressor
        reg = DecisionTreeRegressor()
    elif method == 'rdm_for':  # random forests
        from sklearn.ensemble import RandomForestRegressor
        reg = RandomForestRegressor(n_estimators=100, random_state=3)
    elif method == 'ada_bst':  # AdaBoost Regressor
        from sklearn.ensemble import AdaBoostRegressor
        reg = AdaBoostRegressor(n_estimators=100, random_state=3)
    elif method == 'grd_bst':  # Gradient Boosting Regressor
        from sklearn.ensemble import GradientBoostingRegressor
        reg = GradientBoostingRegressor(random_state=3)
    elif method == 'gss_prc':  # Gaussian Process Regressor
        from sklearn.gaussian_process import GaussianProcessRegressor
        reg = GaussianProcessRegressor(random_state=3)
    elif method == 'knl_rdg':  # Kernel Ridge Regression
        from sklearn.kernel_ridge import KernelRidge
        reg = KernelRidge()
    elif method == 'nst_nbr_uni':  # K Nearest Neighbors Regressor
        from sklearn.neighbors import KNeighborsRegressor
        reg = KNeighborsRegressor(weights='uniform')
    elif method == 'nst_nbr_dst':  # K Nearest Neighbors Regressor
        from sklearn.neighbors import KNeighborsRegressor
        reg = KNeighborsRegressor(weights='distance')
    elif method == 'rad_nbr_uni':  # Radius Neighbor Regressor
        from sklearn.neighbors import RadiusNeighborsRegressor
        reg = RadiusNeighborsRegressor(weights='uniform')
    elif method == 'rad_nbr_dst':  # Radius Neighbor Regressor
        from sklearn.neighbors import RadiusNeighborsRegressor
        reg = RadiusNeighborsRegressor(weights='distance')
    elif method == 'mlp_reg':
        from sklearn.neural_network import MLPRegressor
        reg = MLPRegressor(random_state=3)
    else:
        print(
            'Error: Regression method not recognized.\nPlease pick a valid method key (example: xxx_xxx).'
        )

    ## Preprocessing and Setup ##
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    data = scaler.fit_transform(train_data)
    scaler = StandardScaler()
    test_data = scaler.fit_transform(test_data)
    solution = train_solution.reshape(-1, )
    if method == 'ply_reg':
        data = poly_features.fit_transform(data)
    reg.fit(data, solution)

    if len(test_data) < 5:
        predictions = reg.predict(data)

    elif len(test_data) > 5:
        if method == 'ply_reg':
            test_data = poly_features.transform(test_data)
        test_solution = test_solution.reshape(-1, )
        predictions_test = reg.predict(test_data)
        solution = test_solution
        predictions = predictions_test

    else:
        print('Error: test_set undetermined.')

    Matrix_to_save = pd.DataFrame()
    Matrix_to_save['Solution'] = solution
    Matrix_to_save['Predictions'] = predictions

    return Matrix_to_save
Esempio n. 50
0
    # Find the best optimum by starting from n_restart different random points.
    for x0 in np.random.uniform(bounds[:, 0], bounds[:, 1], size=(25, dim)):
        res = minimize(min_obj, x0=x0, bounds=bounds, method='L-BFGS-B')
        if res.fun < 1:
            min_val = res.fun[0]
            min_x = res.x
    X_next = min_x.reshape(-1, 1)
    return X_next


X_init = np.array([[-0.9], [1.1]])
y_init = f(X_init)
kernel = ConstantKernel(1.0) + RBF(length_scale=2.0,
                                   length_scale_bounds=(0, 10))
gpr = GaussianProcessRegressor(kernel=kernel,
                               random_state=42).fit(X_init, y_init)

forest = RandomForestRegressor(n_estimators=100,
                               random_state=42,
                               oob_score=True)

X_init = np.linspace(-2, 10, 10).reshape(-1, 1)
y_init = f(X_init)

for i in range(2):
    forest.fit(X_init[i:10], y_init[i:10])
    y_mean = forest.predict(X)
    plt.plot(X_init, y_init, "ro", label="Initial samples")
    plt.plot(X, y_mean, label="Surrogate model")
    plt.plot(X, f(X), label="Objective")
Esempio n. 51
0
    kdt = KDTree(Otrain, leaf_size=100, metric='euclidean')
    with open(path + 'kdt_P' + str(l_prior) + '.pkl', 'wb') as f: 
        pickle.dump(kdt, f)
else:
    with open(path + 'kdt_P' + str(l_prior) + '.pkl', 'rb') as f: 
        kdt = pickle.load(f)
K = 10
kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0))
i = 0
T = []
Err = []
import time
for e, o in zip(Etest, Otest):
    # print i
    # print o
    st = time.time()
    idx = kdt.query(o[:d].reshape(1,-1), k = K, return_distance=False)
    O_nn = Otrain[idx,:].reshape(K, d)
    E_nn = Etrain[idx].reshape(K, 1)

    gpr = GaussianProcessRegressor(kernel=kernel).fit(O_nn, E_nn)
    e_mean = gpr.predict(o.reshape(1, -1), return_std=False)[0][0]
    T.append(time.time() - st)
    Err.append(np.abs(e-e_mean))
    # print e, e_mean, np.abs(e-e_mean), o[-1]
    if i >=0:
        print e, e_mean
    i += 1

print "Time: " + str(np.mean(T))
print "Error: " + str(np.mean(Err))
Esempio n. 52
0
    if opts.analysis_type == "measured":
        param_array = np.vstack((color,dmdt,dmdti)).T
    elif opts.analysis_type == "inferred":
        param_array = np.vstack((mej,vej,Xlan)).T
    elif opts.analysis_type == "inferred_bulla":
        param_array = np.vstack((mej,phi,theta)).T

    param_array_postprocess = np.array(param_array)
    param_mins, param_maxs = np.min(param_array_postprocess,axis=0),np.max(param_array_postprocess,axis=0)
    for i in range(len(param_mins)):
        param_array_postprocess[:,i] = (param_array_postprocess[:,i]-param_mins[i])/(param_maxs[i]-param_mins[i])

    nsvds, nparams = param_array_postprocess.shape
    kernel = 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1)
    gp = GaussianProcessRegressor(kernel=kernel,n_restarts_optimizer=0,alpha=1.0)
    gp.fit(param_array_postprocess, Mag)

    M, sigma2_pred = gp.predict(np.atleast_2d(param_array_postprocess), return_std=True)
    sigma_best = np.median(sigma2_pred)
    sigma = sigma_best*np.ones(M.shape)

elif opts.fit_type == "linear":

    if opts.analysis_type == "combined":
        parameters = ["K","alpha","beta","gamma","delta","zeta","sigma"]
        labels = [r'K', r'$\alpha$', r'$\beta$', r'$\gamma$', r"$\delta$",r"$\zeta$",r'$\sigma$']
        n_params = len(parameters)
        
        pymultinest.run(myloglike_combined, myprior_combined, n_params, importance_nested_sampling = False, resume = True, verbose = True, sampling_efficiency = 'parameter', n_live_points = n_live_points, outputfiles_basename='%s/2-'%plotDir, evidence_tolerance = evidence_tolerance, multimodal = False, max_iter = max_iter)
        
Esempio n. 53
0
    ConstantKernel() * Matern(nu=2.5) + WhiteKernel(),
    ConstantKernel() * Matern(nu=2.5) + WhiteKernel() +
    ConstantKernel() * DotProduct()
]

# オートスケーリング
autoscaled_y_train = (y_train - y_train.mean()) / y_train.std()
autoscaled_x_train = (x_train - x_train.mean()) / x_train.std()

# クロスバリデーションによるカーネル関数の最適化
cross_validation = KFold(n_splits=fold_number, random_state=9,
                         shuffle=True)  # クロスバリデーションの分割の設定
r2cvs = []  # 空の list。カーネル関数ごとに、クロスバリデーション後の r2 を入れていきます
for index, kernel in enumerate(kernels):
    print(index + 1, '/', len(kernels))
    model = GaussianProcessRegressor(alpha=0, kernel=kernel)
    estimated_y_in_cv = np.ndarray.flatten(
        cross_val_predict(model,
                          autoscaled_x_train,
                          autoscaled_y_train,
                          cv=cross_validation))
    estimated_y_in_cv = estimated_y_in_cv * y_train.std(
        ddof=1) + y_train.mean()
    r2cvs.append(r2_score(y_train, estimated_y_in_cv))
optimal_kernel_number = np.where(
    r2cvs == np.max(r2cvs))[0][0]  # クロスバリデーション後の r2 が最も大きいカーネル関数の番号
optimal_kernel = kernels[optimal_kernel_number]  # クロスバリデーション後の r2 が最も大きいカーネル関数
print('クロスバリデーションで選択されたカーネル関数の番号 :', optimal_kernel_number)
print('クロスバリデーションで選択されたカーネル関数 :', optimal_kernel)

# モデル構築
Esempio n. 54
0
class CVaR():
  """CVaR/VaR surrogate
  p: function handle for distribution
  p takes in an integer number of points and returns a 2D array
  of vectors
  beta: confidence level for CVaR/VaR
  num_points_MC: number of points used in Monte Carlo
  """
  
  def __init__(self,kernel,p,beta = 0.95, num_points_MC = 1000):
    self.dim    = 0;    # input data dimension
    self.X      = None; # data points
    self.fX     = None; # function evals
    self.GP     = GPR(kernel=kernel) # gaussian process
    self.p      = p     # pdf for U
    self.beta   = beta  # confidence level for CVaR
    self.num_points_MC = num_points_MC # number of points for monte carlo


  # "fit" a GP to the data
  def fit(self, X,fX):
    # update data
    self.X  = X;
    self.fX = fX;
    self.dim = X.shape[1]

    # fit sklearn GP
    self.GP.fit(X,fX)


  def predict(self, xx, std = False):
    """predict C(x) = min_alpha G_beta(x,alpha)
    xx: 2D array of points
    std: Bool
    """
    if std == True:
      print('')
      print("ERROR: CVaR has no variance")
      quit()

    # storage
    N    = np.shape(xx)[0]
    C = np.zeros(N) 

    # for each x in xx calculate C(x)
    for i in range(N):
      # f(x+U) with Monte Carlo on surrogate
      U    = self.p(self.num_points_MC)
      S    = self.GP.predict(xx[i]+U)
      # sort S in ascending order
      S.sort()
      # compute the index of the minimizer
      I = int(np.ceil(self.num_points_MC*self.beta))
      # minimizer
      VaR = S[I]
      # CVaR
      C[i] = S[I] + np.sum(S[I+1:]-S[I])/(1.-self.beta)/self.num_points_MC

    return C

  def update(self, xx,yy):
    """  update gp with new points
    """
    self.X = np.vstack((self.X,xx))
    self.fX = np.concatenate((self.fX,[yy]))
    self.fit(self.X,self.fX)
Esempio n. 55
0
# In[ ]:

sub_knn.head(10)

# In[ ]:

# In[ ]:

# In[ ]:

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, ConstantKernel

gpr = GaussianProcessRegressor(random_state=5,
                               alpha=5e-9,
                               n_restarts_optimizer=0,
                               optimizer='fmin_l_bfgs_b',
                               copy_X_train=True)

param_grid = {
    'normalize_y': [True, False],
    'kernel': [DotProduct(), ConstantKernel(1.0, (1e-3, 1e3))]
}

grid_gpr = GridSearchCV(gpr,
                        param_grid,
                        cv=nr_cv,
                        verbose=1,
                        scoring=score_calc)
grid_gpr.fit(X_sc, y_sc)
Esempio n. 56
0
class GP(Estimator):
    """Wrapper class for the Gaussian Proccess.
    Uses the Sklearn implementation of the Gaussian Process.
    """
    def __init__(
        self,
        kernel=C(constant_value=10, constant_value_bounds=(1, 1000)) *
        RBF(length_scale=1, length_scale_bounds=(1e-3, 2)),
        alpha=1e-7,
        optimizer='fmin_l_bfgs_b',
        n_restarts_optimizer=10,
        normalize_y=True,
        copy_X_train=True,
        random_state=None,
        std_min=0.,
        kernel_once=False,
    ):
        super().__init__()
        self.std_min = std_min
        self.kernel = kernel
        self.gp = GaussianProcessRegressor(
            kernel=kernel.kernel,
            alpha=alpha,
            optimizer=optimizer,
            n_restarts_optimizer=n_restarts_optimizer,
            normalize_y=normalize_y,
            copy_X_train=copy_X_train,
            random_state=random_state)
        self.kernel_once = kernel_once

    @ignore_warnings(category=ConvergenceWarning)
    def get_mean(self, samples_x: np.ndarray, samples_y: np.ndarray,
                 test_x: np.ndarray) -> np.ndarray:
        """ runs the gp estimator to fit the data and evaluate the mean estimate for the test data

        :param samples_x: All input values of the samples
        :param samples_y: All target values of the samples
        :param test_x: test inputs to evaluate the means on
        :return: mean predictions for the test x
        """
        old_stdout = sys.stdout  # backup current stdout
        sys.stdout = open(os.devnull, "w")
        self.gp.fit(samples_x, samples_y)
        sys.stdout = old_stdout
        return self.gp.predict(test_x)

    @ignore_warnings(category=ConvergenceWarning)
    def get_mean_and_cov(self, samples_x: np.ndarray, samples_y: np.ndarray,
                         test_x: np.ndarray) -> List[np.ndarray]:
        """ runs the gp estimator to fit the data and evaluate the mean estimate and covariance for the test data

        :param samples_x: All input values of the samples
        :param samples_y: All target values of the samples
        :param test_x: test inputs to evaluate the means on
        :return: mean and covariance for the test x
        """
        old_stdout = sys.stdout  # backup current stdout
        sys.stdout = open(os.devnull, "w")
        self.gp.fit(samples_x, samples_y)
        sys.stdout = old_stdout
        mean, cov = self.gp.predict(test_x, return_cov=True)
        return [mean, cov]

    @ignore_warnings(category=ConvergenceWarning)
    def fit(self, samples_x: np.ndarray, samples_y: np.ndarray) -> 'NoReturn':
        """fit the the given sample data.
        :param samples_x: All input values of the samples
        :param samples_y: All target values of the samples
        """
        params = None
        if not self.context.bo_step == 0 and self.kernel_once:
            params = self.gp.kernel_.get_params()
            params = self.gp.kernel.fix_params(params=params)
            self.gp.kernel = self.gp.kernel.set_params(**params)
            self.gp.kernel = self.gp.kernel_.set_params(**params)
        old_stdout = sys.stdout  # backup current stdout
        sys.stdout = open(os.devnull, "w")
        self.gp.fit(samples_x, samples_y)
        sys.stdout = old_stdout
        if self.context.inspector and self.context.inspector.store_estimators:
            path = "{}/{}/{}".format(self.context.inspector.inspector_path,
                                     self.__class__.__name__,
                                     self.context.bo_step)
            os.makedirs(path, exist_ok=True)
            with open(path + "/gp.pickle", "wb") as f:
                pickle.dump(self.gp, f)

    @ignore_warnings(category=ConvergenceWarning)
    def estimate(self,
                 samples_x: np.ndarray,
                 samples_y: np.ndarray,
                 test_x: np.ndarray,
                 inspect: bool = True) -> Tuple[np.array, np.array]:
        """train the underlying model with the given samples and then
        get the estimation for mu and sigma for the test data

        :param samples_x: input values of the samples
        :param samples_y: target values of the samples
        :param test_x: data to estimate, for which mu and sigma should be calculated
        :param inspect: should the data be stored in the inspector
        :return: mu and sigma values for the test data
        """
        start_time = datetime.now()
        old_stdout = sys.stdout  # backup current stdout
        sys.stdout = open(os.devnull, "w")
        self.gp.fit(samples_x, samples_y)

        time_elapsed = datetime.now() - start_time
        mean, sigma = self.regress(test_x)
        sys.stdout = old_stdout
        if inspect:
            self._inspect(mean, sigma, time_elapsed)
            self._inspect_on_test_data()
        return mean, sigma

    @ignore_warnings(category=ConvergenceWarning)
    def regress(self, test_x: np.ndarray) -> [np.ndarray, np.ndarray]:
        """only get the estimation for mu and sigma for the test data.
        Assumes that the underlying model is already trained

        :param test_x: data to estimate, for which mu and sigma should be calculated
        :return: mu and sigma values for the test data
        """
        mus, sigmas = self.gp.predict(test_x, return_std=True)
        return mus, np.array([[x + self.std_min] for x in sigmas])

    @ignore_warnings(category=ConvergenceWarning)
    def _inspect(self, mu: np.ndarray, sigma: np.ndarray,
                 time_elapsed: int) -> NoReturn:
        """create a dictionary containing various interesting information for inspection
        :param mu: estimated mu
        :param sigma: estimated sigma
        :param time_elapsed: time spent for the estimation
        """
        if self.context.inspector and self.context.inspector.inspect_estimation:
            inspection_data = {
                "estimator": self.__class__.__name__,
                "final_mu": mu,
                "final_sigma": sigma,
                "time_elapsed": time_elapsed,
                "samples_x": np.copy(self.context.samples_x),
                "samples_y": np.copy(self.context.samples_y),
            }
            self.context.inspector.add_estimation(inspection_data)
        if self.context.inspector and self.context.inspector.store_estimators:
            path = "{}/{}/{}".format(self.context.inspector.inspector_path,
                                     self.__class__.__name__,
                                     self.context.bo_step)
            os.makedirs(path, exist_ok=True)
            with open(path + "/gp.pickle", "wb") as f:
                pickle.dump(self.gp, f)

    @ignore_warnings(category=ConvergenceWarning)
    def _inspect_on_test_data(self) -> NoReturn:
        """run the estimator on syntetic test data
        :return:
        """
        if self.context.inspector and self.context.inspector.estimate_test_data:
            inspection_data = {
                "estimator": self.__class__.__name__,
                "final_mu": None,
                "final_sigma": None,
                "final_acq": None,
                "samples_x": np.copy(self.context.samples_x),
                "samples_y": np.copy(self.context.samples_y),
            }
            mus, sigmas = self.regress(self.context.inspector.test_x)
            inspection_data["final_mu"] = mus
            inspection_data["final_sigma"] = sigmas
            inspection_data["final_acq"] = self.context.acq.evaluate(
                mus, sigmas, np.max(self.context.samples_y), inspect=False)

            self.context.inspector.add_estimation_test_data(inspection_data)

    """
    @staticmethod
    def get_inspector_mu_on_test_data(context, step):
        return context.inspector.estimations_on_test_data[step]["final_mu"]

    @staticmethod
    def get_inspector_sigma_on_test_data(context, step):
        return context.inspector.estimations_on_test_data[step]["final_sigma"]

    @staticmethod
    def get_inspector_samples_x_on_test_data(context, step):
        print(context.inspector.estimations_on_test_data)
        return context.inspector.estimations_on_test_data[step]["samples_x"]

    @staticmethod
    def get_inspector_samples_y_on_test_data(context, step):
        return context.inspector.estimations_on_test_data[step]["samples_y"]

    @staticmethod
    def get_inspector_acq_on_test_data(context, step):
        return context.inspector.estimations_on_test_data[step]["final_acq"]
    """

    def load_model(self,
                   base_path: str,
                   step: int = None,
                   structured: bool = False) -> NoReturn:
        """ Load saved model
        :param base_path: basepath of the save model file
        :param step: step number, needed for stuctured loading
        :param structured: specify if file is loaded from the base_path or from base_path/GP/step/gp.pickle
        :return:
        """
        if not structured:
            with open(base_path, "rb") as f:
                self.gp = pickle.load(f)
        else:
            path = "{}/{}/{}".format(base_path, self.__class__.__name__, step)
            with open(path + "/gp.pickle", "rb") as f:
                self.gp = pickle.load(f)

    @staticmethod
    def read_from_config(config: 'ConfigObj') -> NoReturn:
        """read the config file and construct the GP instance accordingly
        :param config: config object defining the object
        :return:
        """
        kernel = Kernel.read_from_config(config["Kernel"])
        return GP(kernel=kernel,
                  alpha=config.as_float("alpha"),
                  optimizer=config["optimizer"],
                  n_restarts_optimizer=config.as_int("n_restarts_optimizer"),
                  normalize_y=config.as_bool("normalize_y"),
                  copy_X_train=config.as_bool("copy_X_train"),
                  random_state=config_list_int_or_none(config, "random_state"),
                  std_min=config.as_float("std_min"),
                  kernel_once=config.as_bool("kernel_once"))
Esempio n. 57
0
    x, y, test_size=number_of_test_samples, random_state=0)

#index = np.argsort(boston.target)
#y = boston.target[index]
#x = boston.data[index, :]
#x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=number_of_test_samples, shuffle=False)

# autoscaling
autoscaled_x_train = (x_train - x_train.mean(axis=0)) / x_train.std(axis=0,
                                                                    ddof=1)
autoscaled_y_train = (y_train - y_train.mean()) / y_train.std(ddof=1)
autoscaled_x_test = (x_test - x_train.mean(axis=0)) / x_train.std(axis=0,
                                                                  ddof=1)

# Gaussian process regression
model = GaussianProcessRegressor(ConstantKernel() * RBF() + WhiteKernel(),
                                 alpha=0)
model.fit(autoscaled_x_train, autoscaled_y_train)

# AD
ad = ApplicabilityDomain(method_name=method_name,
                         rate_of_outliers=rate_of_outliers)
ad.fit(autoscaled_x_train)

# calculate y in training data
calculated_y_train = model.predict(autoscaled_x_train) * y_train.std(
    ddof=1) + y_train.mean()
# yy-plot
plt.rcParams['font.size'] = 18  # 横軸や縦軸の名前の文字などのフォントのサイズ
plt.figure(figsize=figure.figaspect(1))
plt.scatter(y_train, calculated_y_train, c='blue')
y_max = np.max(np.array([np.array(y_train), calculated_y_train]))
#~ X = root2array('../no_truecc_cut_stride2_offset0.root',
#~ branches='recotrklenact',
#~ selection='mustopz<1275&&isnumucc==1',
#~ step=scaledown).reshape(-1,1)
#~ y = root2array('../no_truecc_cut_stride2_offset0.root',
#~ branches='trueemu',
#~ selection='mustopz<1275&&isnumucc==1',
#~ step=scaledown)
scaledown = 50
X = joblib.load(
    '../../svm/muon/outlier_removed_data/muon_trklen_active_step{}neighbor50.pkl'
    .format(scaledown))
y = joblib.load(
    '../../svm/muon/outlier_removed_data/muon_truee_active_step{}neighbor50.pkl'
    .format(scaledown))

# rescale the regressors
scaler = preprocessing.StandardScaler().fit(X)

# fit the model
gp = GaussianProcessRegressor(kernel=RBF(), n_restarts_optimizer=1)
Xnorm = scaler.transform(X)
gp.fit(Xnorm, y)

# get prediction
y_pred = gp.predict(Xnorm)

# plot
fig = plt.figure()
np.histogram2d(y, X)
Esempio n. 59
0
 def __init__(self,RiskKernel):
   self.dim   = 0;  # input data dimension
   self.X     = None; # data points
   self.fX    = None; # function evals
   self.RiskKernel = RiskKernel;
   self.GP    = GPR(kernel=RiskKernel.GPkernel)
Esempio n. 60
0
def show_landscape_gp(result,
                      plan_keys,
                      itr=-1,
                      fix_param=None,
                      log_scale=False):
    """
    :param result: a OptimizerResult object
    :param plan_keys: list,
        should contain two names of parameters, e.g. ['Jz', 'Jx']
    :param itr: int, default -1,
        the landscape at which iteration to plot
    :param fix_param: dict or None, default: None
        specify the parameter value of parameter not in plan_keys, e.g. {'Jy': 1}
        if None, it will be automatically set to optimal parameter values
    :param log_scale: bool, default: False,
        if True, the colorbar will be in logarithmic scale
    :return: None
    """

    assert isinstance(result, OptimizerResult)
    bounds = [
        result.parameter_space[plan_keys[0]],
        result.parameter_space[plan_keys[1]]
    ]

    xs = np.linspace(bounds[0][0], bounds[0][1], 100)
    ys = np.linspace(bounds[1][0], bounds[1][1], 100)

    def get_param(xi, yi):
        param_names = list(result.parameter_space.keys())
        p_point = np.zeros(len(result.parameter_space))
        if len(plan_keys) == len(result.parameter_space):
            return np.array([xi, yi])
        elif fix_param:
            i = 0
            for param_name in param_names:
                if param_name == plan_keys[0]:
                    p_point[i] = xi
                elif param_name == plan_keys[1]:
                    p_point[i] = yi
                else:
                    p_point[i] = fix_param[param_name]
                i += 1
        else:
            i = 0
            for param_name in param_names:
                if param_name == plan_keys[0]:
                    p_point[i] = xi
                elif param_name == plan_keys[1]:
                    p_point[i] = yi
                else:
                    p_point[i] = result.BO_record[itr].max['params'][
                        param_name]
                i += 1
        return p_point

    X = np.vstack([
        np.array([
            result.parameter_record[i][list(result.parameter_space.keys())[j]]
            for j in range(len(result.parameter_space))
        ]) for i in range(len(result.loss_record))
    ])

    Y = result.loss_record

    GP = GaussianProcessRegressor(
        kernel=Matern(nu=2.5, length_scale_bounds=(1e-05, 1000)),
        alpha=1e-6,
        optimizer='fmin_l_bfgs_b',
        normalize_y=True,
        n_restarts_optimizer=200,
    )

    # GP.fit(X, np.power(10, -Y))
    GP.fit(X, Y)

    predict_values = np.vstack(
        [GP.predict(np.array([get_param(xi, yi) for xi in xs])) for yi in ys])

    fig, ax = plt.subplots(figsize=[5, 5])

    predict_values[np.where(predict_values < 0)] = 1e-3
    # predict_values = -predict_values

    if log_scale:
        ctf = ax.contourf(xs,
                          ys,
                          predict_values,
                          cmap=plt.cm.gnuplot_r,
                          norm=colors.LogNorm(vmin=predict_values.min(),
                                              vmax=predict_values.max()),
                          levels=np.power(
                              10,
                              np.linspace(np.log10(predict_values.min()),
                                          np.log10(predict_values.max()),
                                          100)))
    else:
        ctf = ax.contourf(xs,
                          ys,
                          predict_values,
                          cmap=plt.cm.gnuplot_r,
                          levels=100)

    fig.colorbar(ctf)

    ax.set_xlabel(plan_keys[0])
    ax.set_ylabel(plan_keys[1])

    return fig, ax