def runKDTreeSizeAnalysis(argsdict, data, inlbl, fPath, fName, fileN, i): start = time.time() tree = KDTree(data, leaf_size=1) end = time.time() print tree.get_tree_stats() return tree.__sizeof__(), (end - start)
from sklearn.neighbors import KDTree for lfs in [1000]: startTime = time.perf_counter() kdt = KDTree(train, metric='euclidean', leaf_size=lfs) end_time = time.perf_counter() constructionTime = end_time - startTime startTime = time.perf_counter() dist, result = kdt.query(query, k=100, return_distance=True) end_time = time.perf_counter() searchTime = end_time - startTime kdTreeRecall = hp.returnRecall(result, groundTruth) avgDist = np.mean(dist) ktreeparams = kdt.get_tree_stats() reacll.append(kdTreeRecall) algorithm.append('k-D') construciotnTimes.append(constructionTime) searchTimes.append(searchTime) avgdistances.append(avgDist) #BallTree from sklearn.neighbors import BallTree for lfs in [100]: startTime = time.perf_counter() bt = BallTree(train, metric='euclidean', leaf_size=lfs) end_time = time.perf_counter() constructionTime = end_time - startTime