def decision_function(self, X):
        """Decision function of the linear model

        Parameters
        ----------
        X : numpy array of shape [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
            Returns predicted values.
        """
        X = safe_asarray(X)
        return safe_sparse_dot(X, self.coef_.T) + self.intercept_
Esempio n. 2
0
    def fit(self, X, y_clf, y_regression):
        """
        Fit the multiclass model.

        Parameters
        ----------
        X : numpy array of shape [n_samples,n_features]
            Training data
        y_clf : numpy array of shape [n_samples]
            Target classes for classification model
        y_regression: numpy array of shape [n_samples]
            Target values for regression model 
            
        Returns
        -------
        self : returns an instance of self.
        """

        X = safe_asarray(X)
        y_clf = np.asarray(y_clf)
        y_regression = np.asarray(y_regression)

        self.clf_model = self.clf.fit(X, y_clf)

        classes = set(y_clf)
        regr = self.regr

        def _generator():
            for class_ in classes:
                examples = y_clf == class_
                yield class_, X[examples], y_regression[examples], regr

        out = Parallel(self.n_jobs, self.verbose, self.pre_dispatch)(\
                delayed(_fit_helper)(*params) for params in _generator())

        self.regression_models = {}
        for class_, regr_model in out:
            self.regression_models[class_] = regr_model

        return self
Esempio n. 3
0
    def fit(self, X, y_clf, y_regression):
        """
        Fit the multiclass model.

        Parameters
        ----------
        X : numpy array of shape [n_samples,n_features]
            Training data
        y_clf : numpy array of shape [n_samples]
            Target classes for classification model
        y_regression: numpy array of shape [n_samples]
            Target values for regression model 
            
        Returns
        -------
        self : returns an instance of self.
        """
        
        X = safe_asarray(X)
        y_clf = np.asarray(y_clf)
        y_regression = np.asarray(y_regression)
        
        self.clf_model = self.clf.fit(X, y_clf)
        
        classes = set(y_clf)
        regr = self.regr
        
        def _generator():
            for class_ in classes:
                examples = y_clf == class_
                yield class_, X[examples], y_regression[examples], regr
        
        out = Parallel(self.n_jobs, self.verbose, self.pre_dispatch)(\
                delayed(_fit_helper)(*params) for params in _generator())
        
        self.regression_models = {}
        for class_, regr_model in out:
            self.regression_models[class_] = regr_model
        
        return self
Esempio n. 4
0
    def predict(self, X, return_class_prediction=False):
        """
        Predict using the muticlass regression model

        Parameters
        ----------
        X : numpy array of shape [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
            Returns predicted values.
        """
        
        X = safe_asarray(X)
        y_clf_predicted = np.asarray(self.clf_model.predict(X))
        classes = set(y_clf_predicted)
        
        def _generator():
            for class_ in classes:
                examples = y_clf_predicted == class_
                yield examples, X[examples], self.regression_models[class_]
        
        out = Parallel(self.n_jobs, self.verbose, self.pre_dispatch)(\
                delayed(_predict_helper)(*params) for params in _generator())
        
        y_regr_predicted = None
        for examples, predicted in out:
            if y_regr_predicted is None:
                y_regr_predicted = np.zeros(X.shape[0], predicted.dtype)
            y_regr_predicted[examples] = predicted
            

        if return_class_prediction:
            return y_clf_predicted, y_regr_predicted
        else:
            return y_regr_predicted
Esempio n. 5
0
    def predict(self, X, return_class_prediction=False):
        """
        Predict using the muticlass regression model

        Parameters
        ----------
        X : numpy array of shape [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
            Returns predicted values.
        """

        X = safe_asarray(X)
        y_clf_predicted = np.asarray(self.clf_model.predict(X))
        classes = set(y_clf_predicted)

        def _generator():
            for class_ in classes:
                examples = y_clf_predicted == class_
                yield examples, X[examples], self.regression_models[class_]

        out = Parallel(self.n_jobs, self.verbose, self.pre_dispatch)(\
                delayed(_predict_helper)(*params) for params in _generator())

        y_regr_predicted = None
        for examples, predicted in out:
            if y_regr_predicted is None:
                y_regr_predicted = np.zeros(X.shape[0], predicted.dtype)
            y_regr_predicted[examples] = predicted

        if return_class_prediction:
            return y_clf_predicted, y_regr_predicted
        else:
            return y_regr_predicted
Esempio n. 6
0
    def fit(self, X, y):
        X = safe_asarray(X)
        y = np.asarray(y)

        X = (X.T / y).T
        return super(RSELinearRegression, self).fit(X, y / y)
Esempio n. 7
0
 def fit(self, X, y):
     X = safe_asarray(X)
     y = np.asarray(y)
     
     X = (X.T / y).T
     return super(RSELinearRegression, self).fit(X, y / y)