Esempio n. 1
0
    def _check_is_fitted(self):
        """Check if the estimator is fitted.

        Raises:
            NotFittedError: If the estimator is not fitted.

        """
        sklearn_check_is_fitted(self, ['estimator_'])
Esempio n. 2
0
    def predict(self, X):
        """Predict the class labels for the provided data.

        Args:
            X (:class:`FDataGrid`): FDataGrid with the test samples.

        Returns:

            (np.array): y : array of shape [n_samples] or
            [n_samples, n_outputs] with class labels for each data sample.

        """
        sklearn_check_is_fitted(self, 'centroids_')

        return self.classes_[self._pairwise_distance(
            X, self.centroids_).argmin(axis=1)]
Esempio n. 3
0
    def predict(self, X):
        """Predict the class labels for the provided data.

        Args:
            X (:class:`FDataGrid`): FDataGrid with the test samples.

        Returns:
            y (np.array): array of shape [n_samples] with class labels
                for each data sample.

        """
        sklearn_check_is_fitted(self)

        depths = [
            distribution.predict(X)
            for distribution in self.distributions_
        ]

        return self.classes_[np.argmax(depths, axis=0)]
Esempio n. 4
0
def check_is_fitted(estimator, attributes, msg=None, all_or_any=all):
    """Checks whether the net is initialized.

    Note: This calls ``sklearn.utils.validation.check_is_fitted``
    under the hood, using exactly the same arguments and logic. The
    only difference is that this function has an adapted error message
    and raises a ``skorch.exception.NotInitializedError`` instead of
    an ``sklearn.exceptions.NotFittedError``.

    """
    if msg is None:
        msg = ("This %(name)s instance is not initialized yet. Call "
               "'initialize' or 'fit' with appropriate arguments "
               "before using this method.")
    try:
        sklearn_check_is_fitted(
            estimator=estimator,
            attributes=attributes,
            msg=msg,
            all_or_any=all_or_any,
        )
    except NotFittedError as e:
        raise NotInitializedError(str(e))