Esempio n. 1
0
def test_cnn_core_samples_toy_2(algorithm):
    X = [
        [0, 0],  # 0
        [1, 1],  # 1
        [1, 0],  # 2
        [0, -1],  # 3
        [0.5, -0.5],  # 4
        [2, 1.5],  # 5
        [2.5, -0.5],  # 6
        [4, 2],  # 7
        [4.5, 2.5],  # 8
        [5, -1],  # 9
        [5.5, -0.5],  # 10
        [5.5, -1.5],
    ]  # 11

    labels = commonnn(X, algorithm=algorithm, eps=1.5, min_samples=0)
    assert_array_equal(labels, [0, 0, 0, 0, 0, 0, -1, 1, 1, 2, 2, 2])

    labels = commonnn(X, algorithm=algorithm, eps=1.5, min_samples=1)
    assert_array_equal(labels, [0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1])

    labels = commonnn(X, algorithm=algorithm, eps=1.5, min_samples=2)
    assert_array_equal(labels, [0, -1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1])

    labels = commonnn(X, algorithm=algorithm, eps=1.5, min_samples=3)
    assert_array_equal(labels, [0, -1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1])

    labels = commonnn(X, algorithm=algorithm, eps=1.5, min_samples=4)
    assert_array_equal(labels,
                       [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
Esempio n. 2
0
def test_boundaries():
    # ensure min_samples is inclusive of core point
    core = np.where(commonnn([[0], [1]], eps=2, min_samples=0) >= 0)[0]
    assert 0 in core
    # ensure eps is inclusive of circumference
    core = np.where(commonnn([[0], [1], [1]], eps=1, min_samples=0) >= 0)[0]
    assert 0 in core
    core = np.where(commonnn([[0], [1], [1]], eps=0.99, min_samples=0) >= 0)[0]
    assert 0 not in core
Esempio n. 3
0
def test_cnn_input_not_modified(use_sparse, metric):
    # test that the input is not modified by cnn
    X = np.random.RandomState(0).rand(10, 10)
    X = sparse.csr_matrix(X) if use_sparse else X
    X_copy = X.copy()
    commonnn(X, metric=metric)

    if use_sparse:
        assert_array_equal(X.toarray(), X_copy.toarray())
    else:
        assert_array_equal(X, X_copy)
Esempio n. 4
0
def test_cnn_sparse_precomputed(include_self):
    D = pairwise_distances(X)
    nn = NearestNeighbors(radius=0.9).fit(X)
    X_ = X if include_self else None
    D_sparse = nn.radius_neighbors_graph(X=X_, mode="distance")
    # Ensure it is sparse not merely on diagonals:
    assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1)
    labels_sparse = commonnn(D_sparse,
                             eps=0.8,
                             min_samples=5,
                             metric="precomputed")
    labels_dense = commonnn(D, eps=0.8, min_samples=5, metric="precomputed")
    assert_array_equal(labels_dense, labels_sparse)
Esempio n. 5
0
def test_cnn_sparse_precomputed_different_eps():
    # test that precomputed neighbors graph is filtered if computed with
    # a radius larger than eps.
    lower_eps = 0.2
    nn = NearestNeighbors(radius=lower_eps).fit(X)
    D_sparse = nn.radius_neighbors_graph(X, mode="distance")
    cnn_lower = commonnn(D_sparse, eps=lower_eps, metric="precomputed")

    higher_eps = lower_eps + 0.7
    nn = NearestNeighbors(radius=higher_eps).fit(X)
    D_sparse = nn.radius_neighbors_graph(X, mode="distance")
    cnn_higher = commonnn(D_sparse, eps=lower_eps, metric="precomputed")

    assert_array_equal(cnn_lower, cnn_higher)
Esempio n. 6
0
def test_cnn_core_samples_toy_1(algorithm):
    X = [[0], [2], [3], [4], [6], [8], [10]]

    # Within eps = 1, only points at 2, 3, and 4
    # are neighbours. Valid clusters need to have more than one
    # members, so all other points are isolated and considered
    # noise.
    labels = commonnn(X, algorithm=algorithm, eps=1, min_samples=0)
    assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])

    # With eps=1 and min_samples=1 the 3 samples from the
    # denser area are no core samples anymore (2 and 4 share 3 as
    # common neighbour but are not neighbours of each other)
    labels = commonnn(X, algorithm=algorithm, eps=1, min_samples=1)
    assert_array_equal(labels, [-1, -1, -1, -1, -1, -1, -1])
Esempio n. 7
0
def test_commonnn_similarity():
    # Tests the algorithm with a similarity array.
    # Parameters chosen specifically for this task.
    eps = 0.15
    min_samples = 5
    # Compute similarities
    D = distance.squareform(distance.pdist(X))
    D /= np.max(D)
    # Compute
    labels = commonnn(D,
                      metric="precomputed",
                      eps=eps,
                      min_samples=min_samples)
    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0)

    assert n_clusters_1 == n_clusters

    cobj = CommonNNClustering(metric="precomputed",
                              eps=eps,
                              min_samples=min_samples)
    labels = cobj.fit(D).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_2 == n_clusters
Esempio n. 8
0
def test_cnn_callable():
    # Tests the algorithm with a callable metric.
    # Parameters chosen specifically for this task.
    # Different eps to other test, because distance is not normalised.
    eps = 0.8
    min_samples = 5
    # metric is the function reference, not the string key.
    metric = distance.euclidean
    # Compute
    # parameters chosen for task
    labels = commonnn(
        X,
        metric=metric,
        eps=eps,
        min_samples=min_samples,
        algorithm="ball_tree",
    )

    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_1 == n_clusters

    cobj = CommonNNClustering(metric=metric,
                              eps=eps,
                              min_samples=min_samples,
                              algorithm="ball_tree")
    labels = cobj.fit(X).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_2 == n_clusters
Esempio n. 9
0
def test_cnn_balltree():
    # Tests the algorithm with balltree for neighbor calculation.
    eps = 0.8
    min_samples = 5

    D = pairwise_distances(X)
    labels = commonnn(D,
                      metric="precomputed",
                      eps=eps,
                      min_samples=min_samples)

    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_1 == n_clusters

    cobj = CommonNNClustering(p=2.0,
                              eps=eps,
                              min_samples=min_samples,
                              algorithm="ball_tree")
    labels = cobj.fit(X).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_2 == n_clusters

    cobj = CommonNNClustering(p=2.0,
                              eps=eps,
                              min_samples=min_samples,
                              algorithm="kd_tree")
    labels = cobj.fit(X).labels_

    n_clusters_3 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_3 == n_clusters

    cobj = CommonNNClustering(p=1.0,
                              eps=eps,
                              min_samples=min_samples,
                              algorithm="ball_tree")
    labels = cobj.fit(X).labels_

    n_clusters_4 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_4 == n_clusters

    cobj = CommonNNClustering(leaf_size=20,
                              eps=eps,
                              min_samples=min_samples,
                              algorithm="ball_tree")
    labels = cobj.fit(X).labels_

    n_clusters_5 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_5 == n_clusters
Esempio n. 10
0
def test_cnn_feature():
    # Tests the algorithm with a feature vector array.
    # Parameters chosen specifically for this task.
    # Different eps to other test, because distance is not normalised.
    eps = 0.8
    min_samples = 5
    metric = "euclidean"
    # Compute
    # parameters chosen for task
    labels = commonnn(X, metric=metric, eps=eps, min_samples=min_samples)

    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_1 == n_clusters

    cobj = CommonNNClustering(metric=metric, eps=eps, min_samples=min_samples)
    labels = cobj.fit(X).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert n_clusters_2 == n_clusters
Esempio n. 11
0
def test_cnn_sparse():
    labels_sparse = commonnn(sparse.lil_matrix(X), eps=0.8, min_samples=5)
    labels_dense = commonnn(X, eps=0.8, min_samples=5)
    assert_array_equal(labels_dense, labels_sparse)
Esempio n. 12
0
def test_weighted_cnn():
    # ensure sample_weight is validated
    with pytest.raises(ValueError):
        commonnn([[0], [1]], sample_weight=[2])
    with pytest.raises(ValueError):
        commonnn([[0], [1]], sample_weight=[2, 3, 4])

    # ensure sample_weight has an effect
    assert_array_equal([],
                       commonnn([[0], [1]], sample_weight=None,
                                min_samples=6)[0])
    assert_array_equal([],
                       commonnn([[0], [1]],
                                sample_weight=[5, 5],
                                min_samples=6)[0])
    assert_array_equal([0],
                       commonnn([[0], [1]],
                                sample_weight=[6, 5],
                                min_samples=6)[0])
    assert_array_equal([0, 1],
                       commonnn([[0], [1]],
                                sample_weight=[6, 6],
                                min_samples=6)[0])

    # points within eps of each other:
    assert_array_equal(
        [0, 1],
        commonnn([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0],
    )
    # and effect of non-positive and non-integer sample_weight:
    assert_array_equal(
        [],
        commonnn([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0],
    )
    assert_array_equal(
        [0, 1],
        commonnn([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5,
                 min_samples=6)[0],
    )
    assert_array_equal(
        [0, 1],
        commonnn([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0],
    )
    assert_array_equal(
        [],
        commonnn([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0],
    )

    # for non-negative sample_weight, cores should be identical to repetition
    rng = np.random.RandomState(42)
    sample_weight = rng.randint(0, 5, X.shape[0])
    label1 = commonnn(X, sample_weight=sample_weight)
    assert len(label1) == len(X)

    X_repeated = np.repeat(X, sample_weight, axis=0)
    label_repeated = commonnn(X_repeated)
    core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
    core_repeated_mask[np.where(label_repeated >= 0)[0]] = True
    core_mask = np.zeros(X.shape[0], dtype=bool)
    core_mask[np.where(label1 >= 0)[0]] = True
    assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)

    # sample_weight should work with precomputed distance matrix
    D = pairwise_distances(X)
    core3, label3 = commonnn(D,
                             sample_weight=sample_weight,
                             metric="precomputed")
    assert_array_equal(label1, label3)

    # sample_weight should work with estimator
    est = CommonNNClustering().fit(X, sample_weight=sample_weight)
    label4 = est.labels_
    assert_array_equal(label1, label4)

    est = CommonNNClustering()
    label5 = est.fit_predict(X, sample_weight=sample_weight)

    assert_array_equal(label1, label5)
    assert_array_equal(label1, est.labels_)
Esempio n. 13
0
def test_cnn_badargs(args):
    # Test bad argument values: these should all raise ValueErrors
    with pytest.raises(ValueError):
        commonnn(X, **args)