def test_singular_values_expected(solver): # Set the singular values and see what we get back rng = np.random.RandomState(0) n_samples = 100 n_features = 110 X = rng.randn(n_samples, n_features) pca = TruncatedSVD(n_components=3, algorithm=solver, random_state=rng) X_pca = pca.fit_transform(X) X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0)) X_pca[:, 0] *= 3.142 X_pca[:, 1] *= 2.718 X_hat_pca = np.dot(X_pca, pca.components_) pca.fit(X_hat_pca) assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0], rtol=1e-14)
def test_too_many_components(algorithm, X_sparse): n_features = X_sparse.shape[1] for n_components in (n_features, n_features + 1): tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm) with pytest.raises(ValueError): tsvd.fit(X_sparse)