Esempio n. 1
0
def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble):
    # raise an error when the name contains dunder
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [('lr__', LogisticRegression())]
    else:
        estimators = [('lr__', LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = r"Estimator names must not contain __: got \['lr__'\]"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)

    # raise an error when the name is not unique
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [('lr', LogisticRegression()),
                      ('lr', LogisticRegression())]
    else:
        estimators = [('lr', LinearRegression()), ('lr', LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = r"Names provided are not unique: \['lr', 'lr'\]"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)

    # raise an error when the name conflicts with the parameters
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [('estimators', LogisticRegression())]
    else:
        estimators = [('estimators', LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = "Estimator names conflict with constructor arguments"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)
Esempio n. 2
0
def test_2d_coef():
    X, y = datasets.make_classification(n_samples=1000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0,
                                        n_classes=4)

    est = LogisticRegression()
    for threshold, func in zip(["mean", "median"], [np.mean, np.median]):
        for order in [1, 2, np.inf]:
            # Fit SelectFromModel a multi-class problem
            transformer = SelectFromModel(estimator=LogisticRegression(),
                                          threshold=threshold,
                                          norm_order=order)
            transformer.fit(X, y)
            assert hasattr(transformer.estimator_, 'coef_')
            X_new = transformer.transform(X)
            assert X_new.shape[1] < X.shape[1]

            # Manually check that the norm is correctly performed
            est.fit(X, y)
            importances = np.linalg.norm(est.coef_, axis=0, ord=order)
            feature_mask = importances > func(importances)
            assert_array_almost_equal(X_new, X[:, feature_mask])
Esempio n. 3
0
def test_predict_on_toy_problem():
    """Manually check predicted class labels for toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()

    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2],
                  [2.1, 1.4], [3.1, 2.3]])

    y = np.array([1, 1, 1, 2, 2, 2])

    assert_array_equal(clf1.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
    assert_array_equal(clf2.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
    assert_array_equal(clf3.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])

    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='hard',
                            weights=[1, 1, 1])
    assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])

    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 1, 1])
    assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
Esempio n. 4
0
def test_classifier_results():
    """tests if classifier results match target"""
    alpha = .1
    n_features = 20
    n_samples = 10
    tol = .01
    max_iter = 200
    rng = np.random.RandomState(0)
    X = rng.normal(size=(n_samples, n_features))
    w = rng.normal(size=n_features)
    y = np.dot(X, w)
    y = np.sign(y)
    clf1 = LogisticRegression(solver='sag',
                              C=1. / alpha / n_samples,
                              max_iter=max_iter,
                              tol=tol,
                              random_state=77)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    pred1 = clf1.predict(X)
    pred2 = clf2.predict(X)
    assert_almost_equal(pred1, y, decimal=12)
    assert_almost_equal(pred2, y, decimal=12)
Esempio n. 5
0
def test_compute_class_weight_invariance():
    # Test that results with class_weight="balanced" is invariant wrt
    # class imbalance if the number of samples is identical.
    # The test uses a balanced two class dataset with 100 datapoints.
    # It creates three versions, one where class 1 is duplicated
    # resulting in 150 points of class 1 and 50 of class 0,
    # one where there are 50 points in class 1 and 150 in class 0,
    # and one where there are 100 points of each class (this one is balanced
    # again).
    # With balancing class weights, all three should give the same model.
    X, y = make_blobs(centers=2, random_state=0)
    # create dataset where class 1 is duplicated twice
    X_1 = np.vstack([X] + [X[y == 1]] * 2)
    y_1 = np.hstack([y] + [y[y == 1]] * 2)
    # create dataset where class 0 is duplicated twice
    X_0 = np.vstack([X] + [X[y == 0]] * 2)
    y_0 = np.hstack([y] + [y[y == 0]] * 2)
    # duplicate everything
    X_ = np.vstack([X] * 2)
    y_ = np.hstack([y] * 2)
    # results should be identical
    logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1)
    logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0)
    logreg = LogisticRegression(class_weight="balanced").fit(X_, y_)
    assert_array_almost_equal(logreg1.coef_, logreg0.coef_)
    assert_array_almost_equal(logreg.coef_, logreg0.coef_)
Esempio n. 6
0
def test_ovr_always_present():
    # Test that ovr works with classes that are always present or absent.
    # Note: tests is the case where _ConstantPredictor is utilised
    X = np.ones((10, 2))
    X[:5, :] = 0

    # Build an indicator matrix where two features are always on.
    # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)]
    y = np.zeros((10, 3))
    y[5:, 0] = 1
    y[:, 1] = 1
    y[:, 2] = 1

    ovr = OneVsRestClassifier(LogisticRegression())
    assert_warns(UserWarning, ovr.fit, X, y)
    y_pred = ovr.predict(X)
    assert_array_equal(np.array(y_pred), np.array(y))
    y_pred = ovr.decision_function(X)
    assert np.unique(y_pred[:, -2:]) == 1
    y_pred = ovr.predict_proba(X)
    assert_array_equal(y_pred[:, -1], np.ones(X.shape[0]))

    # y has a constantly absent label
    y = np.zeros((10, 2))
    y[5:, 0] = 1  # variable label
    ovr = OneVsRestClassifier(LogisticRegression())
    assert_warns(UserWarning, ovr.fit, X, y)
    y_pred = ovr.predict_proba(X)
    assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0]))
Esempio n. 7
0
def test_binary_classifier_class_weight():
    """tests binary classifier with classweights for each class"""
    alpha = .1
    n_samples = 50
    n_iter = 20
    tol = .00001
    fit_intercept = True
    X, y = make_blobs(n_samples=n_samples,
                      centers=2,
                      random_state=10,
                      cluster_std=0.1)
    step_size = get_step_size(X, alpha, fit_intercept, classification=True)
    classes = np.unique(y)
    y_tmp = np.ones(n_samples)
    y_tmp[y != classes[1]] = -1
    y = y_tmp

    class_weight = {1: .45, -1: .55}
    clf1 = LogisticRegression(solver='sag',
                              C=1. / alpha / n_samples,
                              max_iter=n_iter,
                              tol=tol,
                              random_state=77,
                              fit_intercept=fit_intercept,
                              multi_class='ovr',
                              class_weight=class_weight)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    le = LabelEncoder()
    class_weight_ = compute_class_weight(class_weight, np.unique(y), y)
    sample_weight = class_weight_[le.fit_transform(y)]
    spweights, spintercept = sag_sparse(X,
                                        y,
                                        step_size,
                                        alpha,
                                        n_iter=n_iter,
                                        dloss=log_dloss,
                                        sample_weight=sample_weight,
                                        fit_intercept=fit_intercept)
    spweights2, spintercept2 = sag_sparse(X,
                                          y,
                                          step_size,
                                          alpha,
                                          n_iter=n_iter,
                                          dloss=log_dloss,
                                          sparse=True,
                                          sample_weight=sample_weight,
                                          fit_intercept=fit_intercept)

    assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2)
    assert_almost_equal(clf1.intercept_, spintercept, decimal=1)

    assert_array_almost_equal(clf2.coef_.ravel(),
                              spweights2.ravel(),
                              decimal=2)
    assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)
Esempio n. 8
0
def test_tie_situation():
    """Check voting classifier selects smaller class label in tie situation."""
    clf1 = LogisticRegression(random_state=123, solver='liblinear')
    clf2 = RandomForestClassifier(random_state=123)
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],
                            voting='hard')
    assert clf1.fit(X, y).predict(X)[73] == 2
    assert clf2.fit(X, y).predict(X)[73] == 1
    assert eclf.fit(X, y).predict(X)[73] == 1
Esempio n. 9
0
def test_scoring_is_not_metric():
    with pytest.raises(ValueError, match='make_scorer'):
        check_scoring(LogisticRegression(), f1_score)
    with pytest.raises(ValueError, match='make_scorer'):
        check_scoring(LogisticRegression(), roc_auc_score)
    with pytest.raises(ValueError, match='make_scorer'):
        check_scoring(Ridge(), r2_score)
    with pytest.raises(ValueError, match='make_scorer'):
        check_scoring(KMeans(), cluster_module.adjusted_rand_score)
Esempio n. 10
0
def test_multiclass_roc_proba_scorer(scorer_name, metric):
    scorer = get_scorer(scorer_name)
    X, y = make_classification(n_classes=3, n_informative=3, n_samples=20,
                               random_state=0)
    lr = LogisticRegression(multi_class="multinomial").fit(X, y)
    y_proba = lr.predict_proba(X)
    expected_score = metric(y, y_proba)

    assert scorer(lr, X, y) == pytest.approx(expected_score)
Esempio n. 11
0
def test_predictproba_hardvoting():
    eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
                                        ('lr2', LogisticRegression())],
                            voting='hard')
    msg = "predict_proba is not available when voting='hard'"
    with pytest.raises(AttributeError, match=msg):
        eclf.predict_proba

    assert not hasattr(eclf, "predict_proba")
    eclf.fit(X, y)
    assert not hasattr(eclf, "predict_proba")
Esempio n. 12
0
def test_sag_classifier_computed_correctly():
    """tests if the binary classifier is computed correctly"""
    alpha = .1
    n_samples = 50
    n_iter = 50
    tol = .00001
    fit_intercept = True
    X, y = make_blobs(n_samples=n_samples,
                      centers=2,
                      random_state=0,
                      cluster_std=0.1)
    step_size = get_step_size(X, alpha, fit_intercept, classification=True)
    classes = np.unique(y)
    y_tmp = np.ones(n_samples)
    y_tmp[y != classes[1]] = -1
    y = y_tmp

    clf1 = LogisticRegression(solver='sag',
                              C=1. / alpha / n_samples,
                              max_iter=n_iter,
                              tol=tol,
                              random_state=77,
                              fit_intercept=fit_intercept,
                              multi_class='ovr')
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    spweights, spintercept = sag_sparse(X,
                                        y,
                                        step_size,
                                        alpha,
                                        n_iter=n_iter,
                                        dloss=log_dloss,
                                        fit_intercept=fit_intercept)
    spweights2, spintercept2 = sag_sparse(X,
                                          y,
                                          step_size,
                                          alpha,
                                          n_iter=n_iter,
                                          dloss=log_dloss,
                                          sparse=True,
                                          fit_intercept=fit_intercept)

    assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2)
    assert_almost_equal(clf1.intercept_, spintercept, decimal=1)

    assert_array_almost_equal(clf2.coef_.ravel(),
                              spweights2.ravel(),
                              decimal=2)
    assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)
Esempio n. 13
0
def test_plot_roc_curve(pyplot, response_method, data_binary,
                        with_sample_weight, drop_intermediate, with_strings):
    X, y = data_binary

    pos_label = None
    if with_strings:
        y = np.array(["c", "b"])[y]
        pos_label = "c"

    if with_sample_weight:
        rng = np.random.RandomState(42)
        sample_weight = rng.randint(1, 4, size=(X.shape[0]))
    else:
        sample_weight = None

    lr = LogisticRegression()
    lr.fit(X, y)

    viz = plot_roc_curve(lr,
                         X,
                         y,
                         alpha=0.8,
                         sample_weight=sample_weight,
                         drop_intermediate=drop_intermediate)

    y_pred = getattr(lr, response_method)(X)
    if y_pred.ndim == 2:
        y_pred = y_pred[:, 1]

    fpr, tpr, _ = roc_curve(y,
                            y_pred,
                            sample_weight=sample_weight,
                            drop_intermediate=drop_intermediate,
                            pos_label=pos_label)

    assert_allclose(viz.roc_auc, auc(fpr, tpr))
    assert_allclose(viz.fpr, fpr)
    assert_allclose(viz.tpr, tpr)

    assert viz.estimator_name == "LogisticRegression"

    # cannot fail thanks to pyplot fixture
    import matplotlib as mpl  # noqal
    assert isinstance(viz.line_, mpl.lines.Line2D)
    assert viz.line_.get_alpha() == 0.8
    assert isinstance(viz.ax_, mpl.axes.Axes)
    assert isinstance(viz.figure_, mpl.figure.Figure)

    expected_label = "LogisticRegression (AUC = {:0.2f})".format(viz.roc_auc)
    assert viz.line_.get_label() == expected_label
    assert viz.ax_.get_ylabel() == "True Positive Rate"
    assert viz.ax_.get_xlabel() == "False Positive Rate"
Esempio n. 14
0
def test_multiclass_roc_proba_scorer_label():
    scorer = make_scorer(roc_auc_score, multi_class='ovo',
                         labels=[0, 1, 2], needs_proba=True)
    X, y = make_classification(n_classes=3, n_informative=3, n_samples=20,
                               random_state=0)
    lr = LogisticRegression(multi_class="multinomial").fit(X, y)
    y_proba = lr.predict_proba(X)

    y_binary = y == 0
    expected_score = roc_auc_score(y_binary, y_proba,
                                   multi_class='ovo',
                                   labels=[0, 1, 2])

    assert scorer(lr, X, y_binary) == pytest.approx(expected_score)
Esempio n. 15
0
def test_classifier_matching():
    n_samples = 20
    X, y = make_blobs(n_samples=n_samples,
                      centers=2,
                      random_state=0,
                      cluster_std=0.1)
    y[y == 0] = -1
    alpha = 1.1
    fit_intercept = True
    step_size = get_step_size(X, alpha, fit_intercept)
    for solver in ['sag', 'saga']:
        if solver == 'sag':
            n_iter = 80
        else:
            # SAGA variance w.r.t. stream order is higher
            n_iter = 300
        clf = LogisticRegression(solver=solver,
                                 fit_intercept=fit_intercept,
                                 tol=1e-11,
                                 C=1. / alpha / n_samples,
                                 max_iter=n_iter,
                                 random_state=10,
                                 multi_class='ovr')
        clf.fit(X, y)

        weights, intercept = sag_sparse(X,
                                        y,
                                        step_size,
                                        alpha,
                                        n_iter=n_iter,
                                        dloss=log_dloss,
                                        fit_intercept=fit_intercept,
                                        saga=solver == 'saga')
        weights2, intercept2 = sag(X,
                                   y,
                                   step_size,
                                   alpha,
                                   n_iter=n_iter,
                                   dloss=log_dloss,
                                   fit_intercept=fit_intercept,
                                   saga=solver == 'saga')
        weights = np.atleast_2d(weights)
        intercept = np.atleast_1d(intercept)
        weights2 = np.atleast_2d(weights2)
        intercept2 = np.atleast_1d(intercept2)

        assert_array_almost_equal(weights, clf.coef_, decimal=9)
        assert_array_almost_equal(intercept, clf.intercept_, decimal=9)
        assert_array_almost_equal(weights2, clf.coef_, decimal=9)
        assert_array_almost_equal(intercept2, clf.intercept_, decimal=9)
Esempio n. 16
0
def test_stacking_classifier_stratify_default():
    # check that we stratify the classes for the default CV
    clf = StackingClassifier(estimators=[('lr', LogisticRegression(
        max_iter=1e4)), ('svm', LinearSVC(max_iter=1e4))])
    # since iris is not shuffled, a simple k-fold would not contain the
    # 3 classes during training
    clf.fit(X_iris, y_iris)
Esempio n. 17
0
def test_multimetric_scorer_calls_method_once(scorers, expected_predict_count,
                                              expected_predict_proba_count,
                                              expected_decision_func_count):
    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])

    mock_est = Mock()
    fit_func = Mock(return_value=mock_est)
    predict_func = Mock(return_value=y)

    pos_proba = np.random.rand(X.shape[0])
    proba = np.c_[1 - pos_proba, pos_proba]
    predict_proba_func = Mock(return_value=proba)
    decision_function_func = Mock(return_value=pos_proba)

    mock_est.fit = fit_func
    mock_est.predict = predict_func
    mock_est.predict_proba = predict_proba_func
    mock_est.decision_function = decision_function_func

    scorer_dict, _ = _check_multimetric_scoring(LogisticRegression(), scorers)
    multi_scorer = _MultimetricScorer(**scorer_dict)
    results = multi_scorer(mock_est, X, y)

    assert set(scorers) == set(results)  # compare dict keys

    assert predict_func.call_count == expected_predict_count
    assert predict_proba_func.call_count == expected_predict_proba_count
    assert decision_function_func.call_count == expected_decision_func_count
Esempio n. 18
0
def test_probability():
    # Predict probabilities.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    with np.errstate(divide="ignore", invalid="ignore"):
        # Normal case
        ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
                                     random_state=rng).fit(X_train, y_train)

        assert_array_almost_equal(
            np.sum(ensemble.predict_proba(X_test), axis=1),
            np.ones(len(X_test)))

        assert_array_almost_equal(ensemble.predict_proba(X_test),
                                  np.exp(ensemble.predict_log_proba(X_test)))

        # Degenerate case, where some classes are missing
        ensemble = BaggingClassifier(base_estimator=LogisticRegression(),
                                     random_state=rng,
                                     max_samples=5).fit(X_train, y_train)

        assert_array_almost_equal(
            np.sum(ensemble.predict_proba(X_test), axis=1),
            np.ones(len(X_test)))

        assert_array_almost_equal(ensemble.predict_proba(X_test),
                                  np.exp(ensemble.predict_log_proba(X_test)))
Esempio n. 19
0
def test_estimators_samples_deterministic():
    # This test is a regression test to check that with a random step
    # (e.g. SparseRandomProjection) and a given random state, the results
    # generated at fit time can be identically reproduced at a later time using
    # data saved in object attributes. Check issue #9524 for full discussion.

    iris = load_iris()
    X, y = iris.data, iris.target

    base_pipeline = make_pipeline(SparseRandomProjection(n_components=2),
                                  LogisticRegression())
    clf = BaggingClassifier(base_estimator=base_pipeline,
                            max_samples=0.5,
                            random_state=0)
    clf.fit(X, y)
    pipeline_estimator_coef = clf.estimators_[0].steps[-1][1].coef_.copy()

    estimator = clf.estimators_[0]
    estimator_sample = clf.estimators_samples_[0]
    estimator_feature = clf.estimators_features_[0]

    X_train = (X[estimator_sample])[:, estimator_feature]
    y_train = y[estimator_sample]

    estimator.fit(X_train, y_train)
    assert_array_equal(estimator.steps[-1][1].coef_, pipeline_estimator_coef)
Esempio n. 20
0
def test_auto_weight():
    # Test class weights for imbalanced data
    from sklearn_lib.linear_model import LogisticRegression
    # We take as dataset the two-dimensional projection of iris so
    # that it is not separable and remove half of predictors from
    # class 1.
    # We add one to the targets as a non-regression test:
    # class_weight="balanced"
    # used to work only when the labels where a range [0..K).
    from sklearn_lib.utils import compute_class_weight
    X, y = iris.data[:, :2], iris.target + 1
    unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2])

    classes = np.unique(y[unbalanced])
    class_weights = compute_class_weight('balanced', classes, y[unbalanced])
    assert np.argmax(class_weights) == 2

    for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0),
                LogisticRegression()):
        # check that score is better when class='balanced' is set.
        y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X)
        clf.set_params(class_weight='balanced')
        y_pred_balanced = clf.fit(
            X[unbalanced],
            y[unbalanced],
        ).predict(X)
        assert (metrics.f1_score(y, y_pred, average='macro') <=
                metrics.f1_score(y, y_pred_balanced, average='macro'))
Esempio n. 21
0
def test_permutation_importance_mixed_types_pandas():
    pd = pytest.importorskip("pandas")
    rng = np.random.RandomState(42)
    n_repeats = 5

    # Last column is correlated with y
    X = pd.DataFrame({
        'col1': [1.0, 2.0, 3.0, np.nan],
        'col2': ['a', 'b', 'a', 'b']
    })
    y = np.array([0, 1, 0, 1])

    num_preprocess = make_pipeline(SimpleImputer(), StandardScaler())
    preprocess = ColumnTransformer([('num', num_preprocess, ['col1']),
                                    ('cat', OneHotEncoder(), ['col2'])])
    clf = make_pipeline(preprocess, LogisticRegression(solver='lbfgs'))
    clf.fit(X, y)

    result = permutation_importance(clf,
                                    X,
                                    y,
                                    n_repeats=n_repeats,
                                    random_state=rng)

    assert result.importances.shape == (X.shape[1], n_repeats)
    # the correlated feature with y is the last column and should
    # have the highest importance
    assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])
Esempio n. 22
0
def test_transform():
    """Check transform method of VotingClassifier on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft').fit(X, y)
    eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft',
                             flatten_transform=True).fit(X, y)
    eclf3 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft',
                             flatten_transform=False).fit(X, y)

    assert_array_equal(eclf1.transform(X).shape, (4, 6))
    assert_array_equal(eclf2.transform(X).shape, (4, 6))
    assert_array_equal(eclf3.transform(X).shape, (3, 4, 2))
    assert_array_almost_equal(eclf1.transform(X), eclf2.transform(X))
    assert_array_almost_equal(
        eclf3.transform(X).swapaxes(0, 1).reshape((4, 6)), eclf2.transform(X))
Esempio n. 23
0
def test_notfitted():
    eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
                                        ('lr2', LogisticRegression())],
                            voting='soft')
    ereg = VotingRegressor([('dr', DummyRegressor())])
    msg = ("This %s instance is not fitted yet. Call \'fit\'"
           " with appropriate arguments before using this estimator.")
    assert_raise_message(NotFittedError, msg % 'VotingClassifier',
                         eclf.predict, X)
    assert_raise_message(NotFittedError, msg % 'VotingClassifier',
                         eclf.predict_proba, X)
    assert_raise_message(NotFittedError, msg % 'VotingClassifier',
                         eclf.transform, X)
    assert_raise_message(NotFittedError, msg % 'VotingRegressor', ereg.predict,
                         X_r)
    assert_raise_message(NotFittedError, msg % 'VotingRegressor',
                         ereg.transform, X_r)
Esempio n. 24
0
def test_classifier_single_class():
    """tests if ValueError is thrown with only one class"""
    X = [[1, 2], [3, 4]]
    y = [1, 1]

    assert_raise_message(
        ValueError, "This solver needs samples of at least 2 classes "
        "in the data",
        LogisticRegression(solver='sag').fit, X, y)
def test_partial_dependence_slice_error(with_dataframe, err_msg):
    X, y = make_classification(random_state=0)
    if with_dataframe:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X)
    estimator = LogisticRegression().fit(X, y)

    with pytest.raises(TypeError, match=err_msg):
        partial_dependence(estimator, X, features=slice(0, 2, 1))
Esempio n. 26
0
def test_voting_classifier_set_params():
    # check equivalence in the output when setting underlying estimators
    clf1 = LogisticRegression(random_state=123, C=1.0)
    clf2 = RandomForestClassifier(random_state=123, max_depth=None)
    clf3 = GaussianNB()

    eclf1 = VotingClassifier([('lr', clf1), ('rf', clf2)],
                             voting='soft',
                             weights=[1, 2]).fit(X, y)
    eclf2 = VotingClassifier([('lr', clf1), ('nb', clf3)],
                             voting='soft',
                             weights=[1, 2])
    eclf2.set_params(nb=clf2).fit(X, y)

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
    assert eclf2.estimators[0][1].get_params() == clf1.get_params()
    assert eclf2.estimators[1][1].get_params() == clf2.get_params()
Esempio n. 27
0
def test_majority_label_iris():
    """Check classification by majority label on dataset iris."""
    clf1 = LogisticRegression(solver='liblinear', random_state=123)
    clf2 = RandomForestClassifier(n_estimators=10, random_state=123)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='hard')
    scores = cross_val_score(eclf, X, y, scoring='accuracy')
    assert_almost_equal(scores.mean(), 0.95, decimal=2)
Esempio n. 28
0
def test_bagging_small_max_features():
    # Check that Bagging estimator can accept low fractional max_features

    X = np.array([[1, 2], [3, 4]])
    y = np.array([1, 0])

    bagging = BaggingClassifier(LogisticRegression(),
                                max_features=0.3,
                                random_state=1)
    bagging.fit(X, y)
Esempio n. 29
0
def test_weights_iris():
    """Check classification by average probabilities on dataset iris."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 2, 10])
    scores = cross_val_score(eclf, X, y, scoring='accuracy')
    assert_almost_equal(scores.mean(), 0.93, decimal=2)
Esempio n. 30
0
def test_score_samples_on_pipeline_without_score_samples():
    X = np.array([[1], [2]])
    y = np.array([1, 2])
    # Test that a pipeline does not have score_samples method when the final
    # step of the pipeline does not have score_samples defined.
    pipe = make_pipeline(LogisticRegression())
    pipe.fit(X, y)
    with pytest.raises(AttributeError,
                       match="'LogisticRegression' object has no attribute "
                       "'score_samples'"):
        pipe.score_samples(X)