elif DATASET=='svhn': dataset = sknet.dataset.load_svhn() if "valid_set" not in dataset.sets: dataset.split_set("train_set", "valid_set", 0.15) standardize = sknet.dataset.Standardize().fit(dataset['images/train_set']) dataset['images/train_set'] = \ standardize.transform(dataset['images/train_set']) dataset['images/test_set'] = \ standardize.transform(dataset['images/test_set']) dataset['images/valid_set'] = \ standardize.transform(dataset['images/valid_set']) iterator = BatchIterator(32, {'train_set': "random_see_all", 'valid_set': 'continuous', 'test_set': 'continuous'}) dataset.create_placeholders(iterator, device="/cpu:0") # Utility function #----------------- #c_p = tf.placeholder(tf.int32) i_p = tf.placeholder(tf.int32) j_p = tf.placeholder(tf.int32) def get_distance(input,tensor): def doit(c): gradient = tf.gradients(tensor[:,c,i_p,j_p],input)[0] norm = tf.sqrt(tf.reduce_sum(tf.square(gradient),[1,2,3]))
from sknet.dataset import BatchIterator from sknet import ops, layers from sknet.utils import flatten from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt dataset = sknet.dataset.load_freefield1010(n_samples=2000, subsample=6) dataset['signals/train_set'] /= dataset['signals/train_set'].max(2, keepdims=True) if "test_set" not in dataset.sets: dataset.split_set("train_set", "test_set", 0.33) dataset.create_placeholders(batch_size=5, iterators_dict={ 'train_set': BatchIterator("random_see_all"), 'valid_set': BatchIterator('continuous'), 'test_set': BatchIterator('continuous') }, device="/cpu:0") # Create Network #--------------- dnn = sknet.Network(name='simple_model') dnn.append( sknet.ops.HermiteSplineConv1D(dataset.signals, J=5, Q=6, K=15,
import matplotlib.pyplot as plt import matplotlib.colors as mcolors # Data Loading #------------- N = 500 TIME = np.linspace(-2, 2, N) X = np.meshgrid(TIME, TIME) X = np.stack([X[0].flatten(), X[1].flatten()], 1).astype('float32') dataset = sknet.dataset.Dataset() dataset.add_variable({'input': {'train_set': X}}) dataset.create_placeholders( batch_size=50, iterators_dict={'train_set': BatchIterator("continuous")}, device="/cpu:0") # Create Network #--------------- # we use a batch_size of 64 and use the dataset.datum shape to # obtain the shape of 1 observation and create the input shape # DN for the layer case # RANK 1 PARALLEL opt = int(sys.argv[-1]) b1 = np.asarray([-2.1, -1, -0.3, 1, 1.6, 2]).astype('float32') / 5 if opt == 0: dnn = sknet.network.Network(name='simple_model')
# Data Loading #------------- dataset = sknet.dataset.load_cifar10() dataset['images/train_set'] -= dataset['images/train_set'].mean((1, 2, 3), keepdims=True) dataset['images/train_set'] /= dataset['images/train_set'].max((1, 2, 3), keepdims=True) dataset['images/test_set'] -= dataset['images/test_set'].mean((1, 2, 3), keepdims=True) dataset['images/test_set'] /= dataset['images/test_set'].max((1, 2, 3), keepdims=True) iterator = BatchIterator(64, { 'train_set': 'random_see_all', 'test_set': 'continuous' }) dataset.create_placeholders(iterator, device="/cpu:0") # Create Network #--------------- # we use a batch_size of 64 and use the dataset.datum shape to # obtain the shape of 1 observation and create the input shape dnn = sknet.Network(name='simple_model') dnn.append(ops.RandomAxisReverse(dataset.images, axis=[-1])) dnn.append(ops.RandomCrop(dnn[-1], (28, 28)))
elif DATASET=='svhn': dataset = sknet.dataset.load_svhn() if "valid_set" not in dataset.sets: dataset.split_set("train_set","valid_set",0.15) #standardize = sknet.dataset.Standardize().fit(dataset['images/train_set']) #dataset['images/train_set'] = \ # standardize.transform(dataset['images/train_set']) #dataset['images/test_set'] = \ # standardize.transform(dataset['images/test_set']) #dataset['images/valid_set'] = \ # standardize.transform(dataset['images/valid_set']) dataset.create_placeholders(batch_size=32, iterators_dict={'train_set':BatchIterator("random_see_all"), 'valid_set':BatchIterator('continuous'), 'test_set':BatchIterator('continuous')},device="/cpu:0") # Create Network #--------------- dnn = sknet.Network(name='simple_model') if DATA_AUGMENTATION: dnn.append(ops.RandomAxisReverse(dataset.images,axis=[-1])) dnn.append(ops.RandomCrop(dnn[-1],(28,28),seed=10)) else: dnn.append(dataset.images) if MODEL=='cnn':