def test_TransferSuccess(self): X = numpy.zeros((8, 4)) ae = AE(layers=[L("Tanh", units=4)], n_iter=1) ae.fit(X) nn = mlp.MultiLayerPerceptron(layers=[mlp.Layer("Tanh", units=4)]) ae.transfer(nn)
def test_TransferFailure(self): X = numpy.zeros((8, 4)) ae = AE(layers=[L("Tanh", units=8)], n_iter=1) ae.fit(X) nn = mlp.MultiLayerPerceptron(layers=[mlp.Layer("Tanh", units=4)]) assert_raises(AssertionError, ae.transfer, nn)
def main(): print '[INFO, time: %s] Getting Data....' % (time.strftime('%H:%M:%S')) preprocesser = Preprocess() data= preprocesser.read() print '[INFO, time: %s] Fitting %s ...' % (time.strftime('%H:%M:%S'), 'Auto Encoder') ae = AutoEncoder( layers=[ Layer("Sigmoid",units=100) ], learning_rate=0.01, n_iter=40, verbose=True, ) ae.fit(data[:,:-1]) print '[INFO, time: %s] Transforming Data with %s ...' % (time.strftime('%H:%M:%S'), 'Auto Encoder') splitRatio = 0.67 train, test = splitDataset(data, splitRatio) train = np.asarray(train) test = np.asarray(test) trainX = train[:,:-1] trainy = train[:,-1] testX = test[:,:-1] testy = test[:,-1] transformed_trainX = ae.transform(trainX) transformed_testX = ae.transform(testX) print '[INFO, time: %s] Fitting %s ...' % (time.strftime('%H:%M:%S'), 'SVM - rbf kernel (i.e. gaussian) with default paramenters') clf = SVC() clf.fit(transformed_trainX, trainy) print '[INFO, time: %s] Making Predictions...' % (time.strftime('%H:%M:%S')) prediction = clf.predict(transformed_testX) print '[RESULT, time: %s] accuracy = %f' % (time.strftime('%H:%M:%S'),accuracy_score(testy, prediction))
def test_FitVerbose(self): X = numpy.zeros((8,4)) ae = AE(layers=[L("Sigmoid", units=8)], n_iter=1, verbose=1) ae.fit(X)
def test_FitVerbose(self): X = numpy.zeros((8, 4)) ae = AE(layers=[L("Sigmoid", units=8)], n_iter=1, verbose=1) ae.fit(X)