Esempio n. 1
0
def get_un_aligned_tileset():
    unAlignedTileset = TileSet(
        [Axes.X, Axes.Y, Axes.CH, Axes.ZPLANE, Axes.ROUND], {
            Axes.CH: NUM_CH,
            Axes.ROUND: NUM_ROUND,
            Axes.ZPLANE: NUM_Z
        }, {
            Axes.Y: HEIGHT,
            Axes.X: WIDTH
        })

    for r in range(NUM_ROUND):
        for ch in range(NUM_CH):
            for z in range(NUM_Z):
                tile = Tile(
                    {
                        # The round_to methods generate coordinates
                        # based on the r value, therefore the coords vary
                        # throughout the tileset
                        Coordinates.X:
                        round_to_x(r),
                        Coordinates.Y:
                        round_to_y(r),
                        Coordinates.Z:
                        round_to_z(r),
                    },
                    {
                        Axes.ROUND: r,
                        Axes.CH: ch,
                        Axes.ZPLANE: z,
                    })
                tile.numpy_array = np.zeros((HEIGHT, WIDTH))
                unAlignedTileset.add_tile(tile)
    return unAlignedTileset
Esempio n. 2
0
def get_aligned_tileset():
    alignedTileset = TileSet(
        [Axes.X, Axes.Y, Axes.CH, Axes.ZPLANE, Axes.ROUND], {
            Axes.CH: NUM_CH,
            Axes.ROUND: NUM_ROUND,
            Axes.ZPLANE: NUM_Z
        }, {
            Axes.Y: HEIGHT,
            Axes.X: WIDTH
        })

    for r in range(NUM_ROUND):
        for ch in range(NUM_CH):
            for z in range(NUM_Z):
                tile = Tile(
                    {
                        Coordinates.X: 1,
                        Coordinates.Y: 4,
                        Coordinates.Z: 3,
                    }, {
                        Axes.ROUND: r,
                        Axes.CH: ch,
                        Axes.ZPLANE: z,
                    })
                tile.numpy_array = np.zeros((100, 100))
                alignedTileset.add_tile(tile)
    return alignedTileset
Esempio n. 3
0
    def synthetic_stack(
        cls,
        num_hyb: int = 4,
        num_ch: int = 4,
        num_z: int = 12,
        tile_height: int = 50,
        tile_width: int = 40,
        tile_data_provider: Callable[[int, int, int, int, int],
                                     np.ndarray] = None,
        tile_extras_provider: Callable[[int, int, int], Any] = None,
    ) -> "ImageStack":
        """generate a synthetic ImageStack

        Returns
        -------
        ImageStack :
            imagestack containing a tensor whose default shape is (2, 3, 4, 30, 20)
            and whose default values are all 1.

        """
        if tile_data_provider is None:
            tile_data_provider = cls._default_tile_data_provider
        if tile_extras_provider is None:
            tile_extras_provider = cls._default_tile_extras_provider

        img = TileSet(
            {Coordinates.X, Coordinates.Y, Indices.HYB, Indices.CH, Indices.Z},
            {
                Indices.HYB: num_hyb,
                Indices.CH: num_ch,
                Indices.Z: num_z,
            },
            default_tile_shape=(tile_height, tile_width),
        )
        for hyb in range(num_hyb):
            for ch in range(num_ch):
                for z in range(num_z):
                    tile = Tile(
                        {
                            Coordinates.X: (0.0, 0.001),
                            Coordinates.Y: (0.0, 0.001),
                            Coordinates.Z: (0.0, 0.001),
                        },
                        {
                            Indices.HYB: hyb,
                            Indices.CH: ch,
                            Indices.Z: z,
                        },
                        extras=tile_extras_provider(hyb, ch, z),
                    )
                    tile.numpy_array = tile_data_provider(
                        hyb, ch, z, tile_height, tile_width)

                    img.add_tile(tile)

        stack = cls(img)
        return stack
Esempio n. 4
0
def synthetic_stack(
        num_hyb: int=DEFAULT_NUM_HYB,
        num_ch: int=DEFAULT_NUM_CH,
        num_z: int=DEFAULT_NUM_Z,
        tile_height: int=DEFAULT_HEIGHT,
        tile_width: int=DEFAULT_WIDTH,
        tile_data_provider: Callable[[int, int, int, int, int], np.ndarray]=default_tile_data_provider,
        tile_extras_provider: Callable[[int, int, int], Any]=default_tile_extras_provider
) -> ImageStack:
    """generate a synthetic ImageStack

    Returns
    -------
    ImageStack :
        imagestack containing a tensor of (2, 3, 4, 30, 20) whose values are all 1.

    """
    img = TileSet(
        {Coordinates.X, Coordinates.Y, Indices.HYB, Indices.CH, Indices.Z},
        {
            Indices.HYB: num_hyb,
            Indices.CH: num_ch,
            Indices.Z: num_z,
        },
        default_tile_shape=(tile_height, tile_width),
    )
    for hyb in range(num_hyb):
        for ch in range(num_ch):
            for z in range(num_z):
                tile = Tile(
                    {
                        Coordinates.X: (0.0, 0.001),
                        Coordinates.Y: (0.0, 0.001),
                        Coordinates.Z: (0.0, 0.001),
                    },
                    {
                        Indices.HYB: hyb,
                        Indices.CH: ch,
                        Indices.Z: z,
                    },
                    extras=tile_extras_provider(hyb, ch, z),
                )
                tile.numpy_array = tile_data_provider(hyb, ch, z, tile_height, tile_width)

                img.add_tile(tile)

    stack = ImageStack(img)
    return stack
Esempio n. 5
0
    def set_aux(self, key, img):
        if key in self.auxiliary_images:
            old_img = self.auxiliary_images[key]
            if old_img.shape != img.shape:
                msg = "Shape mismatch. Current data shape: {}, new data shape: {}".format(
                    old_img.shape, img.shape)
                raise AttributeError(msg)
            self.auxiliary_images[key].numpy_array = img
        else:
            # TODO: (ttung) major hack alert.  we don't have a convenient mechanism to build an ImageStack from a single
            # numpy array, which we probably should.
            tileset = TileSet(
                {
                    Indices.HYB,
                    Indices.CH,
                    Indices.Z,
                    Coordinates.X,
                    Coordinates.Y,
                }, {
                    Indices.HYB: 1,
                    Indices.CH: 1,
                    Indices.Z: 1,
                })
            tile = Tile(
                {
                    Coordinates.X: (0.000, 0.001),
                    Coordinates.Y: (0.000, 0.001),
                },
                {
                    Indices.HYB: 0,
                    Indices.CH: 0,
                    Indices.Z: 0,
                },
                img.shape,
            )
            tile.numpy_array = img
            tileset.add_tile(tile)

            self.auxiliary_images[key] = ImageStack(tileset)
            self.org['auxiliary_images'][key] = f"{key}.json"
Esempio n. 6
0
    def export(self,
               filepath: str,
               tile_opener=None,
               tile_format: ImageFormat = ImageFormat.NUMPY) -> None:
        """write the image tensor to disk in spaceTx format

        Parameters
        ----------
        filepath : str
            Path + prefix for the images and primary_images.json written by this function
        tile_opener : TODO ttung: doc me.
        tile_format : ImageFormat
            Format in which each 2D plane should be written.

        """
        # Add log data to extras
        self._tile_data.extras[STARFISH_EXTRAS_KEY] = logging.LogEncoder(
        ).encode({LOG: self.log})
        tileset = TileSet(
            dimensions={
                Axes.ROUND,
                Axes.CH,
                Axes.ZPLANE,
                Axes.Y,
                Axes.X,
            },
            shape={
                Axes.ROUND: self.num_rounds,
                Axes.CH: self.num_chs,
                Axes.ZPLANE: self.num_zplanes,
            },
            default_tile_shape={
                Axes.Y: self.tile_shape[0],
                Axes.X: self.tile_shape[1]
            },
            extras=self._tile_data.extras,
        )
        for axis_val_map in self._iter_axes({Axes.ROUND, Axes.CH,
                                             Axes.ZPLANE}):
            tilekey = TileKey(round=axis_val_map[Axes.ROUND],
                              ch=axis_val_map[Axes.CH],
                              zplane=axis_val_map[Axes.ZPLANE])
            round_, ch, zplane = tilekey.round, tilekey.ch, tilekey.z
            extras: dict = self._tile_data[tilekey]

            selector = {
                Axes.ROUND: round_,
                Axes.CH: ch,
                Axes.ZPLANE: zplane,
            }

            coordinates: MutableMapping[Coordinates, Union[Tuple[Number,
                                                                 Number],
                                                           Number]] = dict()
            x_coordinates = (float(self.xarray[Coordinates.X.value][0]),
                             float(self.xarray[Coordinates.X.value][-1]))
            y_coordinates = (float(self.xarray[Coordinates.Y.value][0]),
                             float(self.xarray[Coordinates.Y.value][-1]))
            coordinates[Coordinates.X] = x_coordinates
            coordinates[Coordinates.Y] = y_coordinates
            if Coordinates.Z in self.xarray.coords:
                # set the z coord to the calculated value from the associated z plane
                z_coordinates = float(self.xarray[Coordinates.Z.value][zplane])
                coordinates[Coordinates.Z] = z_coordinates

            tile = Tile(
                coordinates=coordinates,
                indices=selector,
                extras=extras,
            )
            tile.numpy_array, _ = self.get_slice(selector={
                Axes.ROUND: round_,
                Axes.CH: ch,
                Axes.ZPLANE: zplane
            })
            tileset.add_tile(tile)

        if tile_opener is None:

            def tile_opener(tileset_path: Path, tile, ext):
                base = tileset_path.parent / tileset_path.stem
                if Axes.ZPLANE in tile.indices:
                    zval = tile.indices[Axes.ZPLANE]
                    zstr = "-Z{}".format(zval)
                else:
                    zstr = ""
                return open(
                    "{}-H{}-C{}{}.{}".format(
                        str(base),
                        tile.indices[Axes.ROUND],
                        tile.indices[Axes.CH],
                        zstr,
                        ext,
                    ), "wb")

        if not filepath.endswith('.json'):
            filepath += '.json'
        Writer.write_to_path(tileset,
                             filepath,
                             pretty=True,
                             tile_opener=tile_opener,
                             tile_format=tile_format)
Esempio n. 7
0
    def export(self,
               filepath: str,
               tile_opener=None,
               tile_format: ImageFormat = ImageFormat.NUMPY) -> None:
        """write the image tensor to disk in spaceTx format

        Parameters
        ----------
        filepath : str
            Path + prefix for the images and primary_images.json written by this function
        tile_opener : TODO ttung: doc me.
        tile_format : ImageFormat
            Format in which each 2D plane should be written.

        """
        tileset = TileSet(
            dimensions={
                Indices.ROUND,
                Indices.CH,
                Indices.Z,
                Indices.Y,
                Indices.X,
            },
            shape={
                Indices.ROUND: self.num_rounds,
                Indices.CH: self.num_chs,
                Indices.Z: self.num_zlayers,
            },
            default_tile_shape=self._tile_shape,
            extras=self._tile_metadata.extras,
        )
        for round_ in range(self.num_rounds):
            for ch in range(self.num_chs):
                for zlayer in range(self.num_zlayers):
                    tilekey = TileKey(round=round_, ch=ch, z=zlayer)
                    extras: dict = self._tile_metadata[tilekey]

                    tile_indices = {
                        Indices.ROUND: round_,
                        Indices.CH: ch,
                        Indices.Z: zlayer,
                    }

                    coordinates: MutableMapping[Coordinates,
                                                Tuple[Number,
                                                      Number]] = dict()
                    x_coordinates = self.tile_coordinates(
                        tile_indices, Coordinates.X)
                    y_coordinates = self.tile_coordinates(
                        tile_indices, Coordinates.Y)
                    z_coordinates = self.tile_coordinates(
                        tile_indices, Coordinates.Z)

                    coordinates[Coordinates.X] = x_coordinates
                    coordinates[Coordinates.Y] = y_coordinates
                    if z_coordinates[0] != np.nan and z_coordinates[
                            1] != np.nan:
                        coordinates[Coordinates.Z] = z_coordinates

                    tile = Tile(
                        coordinates=coordinates,
                        indices=tile_indices,
                        extras=extras,
                    )
                    tile.numpy_array, _ = self.get_slice(indices={
                        Indices.ROUND: round_,
                        Indices.CH: ch,
                        Indices.Z: zlayer
                    })
                    tileset.add_tile(tile)

        if tile_opener is None:

            def tile_opener(tileset_path, tile, ext):
                tile_basename = os.path.splitext(tileset_path)[0]
                if Indices.Z in tile.indices:
                    zval = tile.indices[Indices.Z]
                    zstr = "-Z{}".format(zval)
                else:
                    zstr = ""
                return open(
                    "{}-H{}-C{}{}.{}".format(
                        tile_basename,
                        tile.indices[Indices.ROUND],
                        tile.indices[Indices.CH],
                        zstr,
                        ext,
                    ), "wb")

        if not filepath.endswith('.json'):
            filepath += '.json'
        Writer.write_to_path(tileset,
                             filepath,
                             pretty=True,
                             tile_opener=tile_opener,
                             tile_format=tile_format)
Esempio n. 8
0
    def export(self,
               filepath: str,
               tile_opener: Optional[Callable[[PurePath, Tile, str], BinaryIO]] = None,
               tile_format: ImageFormat=ImageFormat.NUMPY) -> None:
        """write the image tensor to disk in spaceTx format

        Parameters
        ----------
        filepath : str
            Path + prefix for the images and primary_images.json written by this function
        tile_opener : Optional[Callable[[PurePath, Tile, str], BinaryIO]]
            A callable responsible for opening the file that a tile's data is to be written to. The
            callable should accept three arguments -- the path of the tileset, the tile data, and
            the expected file extension. If this is not specified, a reasonable default is provided.
        tile_format : ImageFormat
            Format in which each 2D plane should be written.

        """
        # Add log data to extras
        tileset_extras = self._tile_data.extras if self._tile_data else {}
        tileset_extras[STARFISH_EXTRAS_KEY] = self.log.encode()
        tileset = TileSet(
            dimensions={
                Axes.ROUND,
                Axes.CH,
                Axes.ZPLANE,
                Axes.Y,
                Axes.X,
            },
            shape={
                Axes.ROUND: self.num_rounds,
                Axes.CH: self.num_chs,
                Axes.ZPLANE: self.num_zplanes,
            },
            default_tile_shape={Axes.Y: self.tile_shape[0], Axes.X: self.tile_shape[1]},
            extras=tileset_extras,
        )
        for selector in self._iter_axes({Axes.ROUND, Axes.CH, Axes.ZPLANE}):
            tilekey = TileKey(
                round=selector[Axes.ROUND],
                ch=selector[Axes.CH],
                zplane=selector[Axes.ZPLANE])
            extras: dict = self._tile_data[tilekey] if self._tile_data else {}

            coordinates: MutableMapping[Coordinates, Union[Tuple[Number, Number], Number]] = dict()
            x_coordinates = (float(self.xarray[Coordinates.X.value][0]),
                             float(self.xarray[Coordinates.X.value][-1]))
            y_coordinates = (float(self.xarray[Coordinates.Y.value][0]),
                             float(self.xarray[Coordinates.Y.value][-1]))
            coordinates[Coordinates.X] = x_coordinates
            coordinates[Coordinates.Y] = y_coordinates
            if Coordinates.Z in self.xarray.coords:
                # set the z coord to the calculated value from the associated z plane
                z_coordinates = float(self.xarray[Coordinates.Z.value][selector[Axes.ZPLANE]])
                coordinates[Coordinates.Z] = z_coordinates

            tile = Tile(
                coordinates=coordinates,
                indices=selector,
                extras=extras,
            )
            tile.numpy_array, _ = self.get_slice(selector)
            tileset.add_tile(tile)

        if tile_opener is None:
            def tile_opener(tileset_path: PurePath, tile: Tile, ext: str):
                base = tileset_path.parent / tileset_path.stem
                if Axes.ZPLANE in tile.indices:
                    zval = tile.indices[Axes.ZPLANE]
                    zstr = "-Z{}".format(zval)
                else:
                    zstr = ""
                return open(
                    "{}-H{}-C{}{}.{}".format(
                        str(base),
                        tile.indices[Axes.ROUND],
                        tile.indices[Axes.CH],
                        zstr,
                        ext,
                    ),
                    "wb")

        if not filepath.endswith('.json'):
            filepath += '.json'
        Writer.write_to_path(
            tileset,
            filepath,
            pretty=True,
            tile_opener=tile_opener,
            tile_format=tile_format)
Esempio n. 9
0
def build_image(
    fov_count: int,
    round_count: int,
    ch_count: int,
    z_count: int,
    image_fetcher: TileFetcher,
    default_shape: Optional[Tuple[int, int]] = None,
) -> Collection:
    """
    Build and returns an image set with the following characteristics:

    Parameters
    ----------
    fov_count : int
        Number of fields of view in this image set.
    round_count : int
        Number for rounds in this image set.
    ch_count : int
        Number for channels in this image set.
    z_count : int
        Number of z-layers in this image set.
    image_fetcher : TileFetcher
        Instance of TileFetcher that provides the data for the tile.
    default_shape : Optional[Tuple[int, int]]
        Default shape of the individual tiles in this image set.

    Returns
    -------
    The slicedimage collection representing the image.
    """
    collection = Collection()
    for fov_ix in range(fov_count):
        fov_images = TileSet(
            [
                Coordinates.X,
                Coordinates.Y,
                Coordinates.Z,
                Indices.Z,
                Indices.ROUND,
                Indices.CH,
                Indices.X,
                Indices.Y,
            ],
            {
                Indices.ROUND: round_count,
                Indices.CH: ch_count,
                Indices.Z: z_count
            },
            default_shape,
            ImageFormat.TIFF,
        )

        for z_ix in range(z_count):
            for round_ix in range(round_count):
                for ch_ix in range(ch_count):
                    image = image_fetcher.get_tile(fov_ix, round_ix, ch_ix,
                                                   z_ix)
                    tile = Tile(
                        image.coordinates,
                        {
                            Indices.Z: z_ix,
                            Indices.ROUND: round_ix,
                            Indices.CH: ch_ix,
                        },
                        image.shape,
                        extras=image.extras,
                    )
                    tile.numpy_array = image.tile_data
                    fov_images.add_tile(tile)
        collection.add_partition("fov_{:03}".format(fov_ix), fov_images)
    return collection
Esempio n. 10
0
def synthesize() -> Tuple[Stack, list]:
    """Synthesize synthetic spatial image-based transcriptomics data

    Returns
    -------
    Stack :
        starfish Stack containing synthetic spots
    list :
        codebook matching the synthetic data

    """

    # set random seed so that data is consistent across tests
    random.seed(2)
    np.random.seed(2)

    NUM_HYB = 4
    NUM_CH = 2
    NUM_Z = 1
    HEIGHT = 100
    WIDTH = 100

    assert WIDTH == HEIGHT  # for compatibility with the parameterization of the code

    def choose(n, k):
        if n == k:
            return [[1] * k]
        subsets = [[0] + a for a in choose(n - 1, k)]
        if k > 0:
            subsets += [[1] + a for a in choose(n - 1, k - 1)]
        return subsets

    def graham_sloane_codes(n):
        # n is length of codeword
        # number of on bits is 4
        def code_sum(codeword):
            return sum([i * c for i, c in enumerate(codeword)]) % n
        return [c for c in choose(n, 4) if code_sum(c) == 0]

    p = {
        # number of on bits (not used with current codebook)
        'N_high': 4,
        # length of barcode
        'N_barcode': NUM_CH * NUM_HYB,
        # mean number of flourophores per transcripts - depends on amplification strategy (e.g HCR, bDNA)
        'N_flour': 200,
        # mean number of photons per flourophore - depends on exposure time, bleaching rate of dye
        'N_photons_per_flour': 50,
        # mean number of background photons per pixel - depends on tissue clearing and autoflourescence
        'N_photon_background': 1000,
        # quantum efficiency of the camera detector units number of electrons per photon
        'detection_efficiency': .25,
        # camera read noise per pixel in units electrons
        'N_background_electrons': 1,
        # number of RNA puncta; keep this low to reduce overlap probability
        'N_spots': 20,
        # height and width of image in pixel units
        'N_size': WIDTH,
        # standard devitation of gaussian in pixel units
        'psf': 2,
        # dynamic range of camera sensor 37,000 assuming a 16-bit AD converter
        'graylevel': 37000.0 / 2 ** 16,
        # 16-bit AD converter
        'bits': 16
    }

    codebook = graham_sloane_codes(p['N_barcode'])

    def generate_spot(p):
        position = rand(2)
        gene = random.choice(range(len(codebook)))
        barcode = array(codebook[gene])
        photons = [poisson(p['N_photons_per_flour']) * poisson(p['N_flour']) * b for b in barcode]
        return DataFrame({'position': [position], 'barcode': [barcode], 'photons': [photons], 'gene': gene})

    # right now there is no jitter on x-y positions of the spots, we might want to make it a vector
    spots = concat([generate_spot(p) for _ in range(p['N_spots'])])  # type: ignore

    image = zeros((p['N_barcode'], p['N_size'], p['N_size'],))

    for s in spots.itertuples():
        image[:, int(p['N_size'] * s.position[0]), int(p['N_size'] * s.position[1])] = s.photons

    image_with_background = image + poisson(p['N_photon_background'], size=image.shape)
    filtered = array([gaussian(im, p['psf']) for im in image_with_background])
    filtered = filtered * p['detection_efficiency'] + normal(scale=p['N_background_electrons'], size=filtered.shape)
    signal = np.array([(x / p['graylevel']).astype(int).clip(0, 2 ** p['bits']) for x in filtered])

    def select_uint_dtype(array):
        """choose appropriate dtype based on values of an array"""
        max_val = np.max(array)
        for dtype in [np.uint8, np.uint16, np.uint32, np.uint64]:
            if max_val <= dtype(-1):
                return array.astype(dtype)
        raise ValueError('value exceeds dynamic range of largest numpy type')

    corrected_signal = select_uint_dtype(signal)
    rescaled_signal: np.ndarray = rescale_intensity(corrected_signal)

    # set up the tile set
    image_data = TileSet(
        {Coordinates.X, Coordinates.Y, Indices.HYB, Indices.CH, Indices.Z},
        {
            Indices.HYB: NUM_HYB,
            Indices.CH: NUM_CH,
            Indices.Z: NUM_Z,
        },
        default_tile_shape=(HEIGHT, WIDTH),
    )

    # fill the TileSet
    experiment_indices = list(product(range(NUM_HYB), range(NUM_CH), range(NUM_Z)))
    for i, (hyb, ch, z) in enumerate(experiment_indices):

        tile = Tile(
            {
                Coordinates.X: (0.0, 0.001),
                Coordinates.Y: (0.0, 0.001),
                Coordinates.Z: (0.0, 0.001),
            },
            {
                Indices.HYB: hyb,
                Indices.CH: ch,
                Indices.Z: z,
            }
        )
        tile.numpy_array = rescaled_signal[i]

        image_data.add_tile(tile)

    data_stack = ImageStack(image_data)

    # make a max projection and pretend that's the dots image, which we'll create another ImageStack for this
    dots_data = TileSet(
        {Coordinates.X, Coordinates.Y, Indices.HYB, Indices.CH, Indices.Z},
        {
            Indices.HYB: 1,
            Indices.CH: 1,
            Indices.Z: 1,
        },
        default_tile_shape=(HEIGHT, WIDTH),
    )
    tile = Tile(
        {
            Coordinates.X: (0.0, 0.001),
            Coordinates.Y: (0.0, 0.001),
            Coordinates.Z: (0.0, 0.001),
        },
        {
            Indices.HYB: 0,
            Indices.CH: 0,
            Indices.Z: 0,
        }
    )

    tile.numpy_array = np.max(rescaled_signal, 0)

    dots_data.add_tile(tile)
    dots_stack = ImageStack(dots_data)

    # TODO can we mock up a nuclei image somehow?

    # put the data together into a top-level Stack
    results = Stack.from_data(data_stack, aux_dict={'dots': dots_stack})

    # make the codebook(s)
    codebook = []
    for _, code_record in spots.iterrows():
        codeword = []
        for code_value, (hyb, ch, z) in zip(code_record['barcode'], experiment_indices):
            if code_value != 0:
                codeword.append({
                    Indices.HYB: hyb,
                    Indices.CH: ch,
                    Indices.Z: z,
                    "v": code_value
                })
        codebook.append(
            {
                'codeword': codeword,
                'gene_name': code_record['gene']
            }
        )

    return results, codebook