Esempio n. 1
0
def imagenet_input(is_training):
    """Data reader for imagenet.

  Reads in imagenet data and performs pre-processing on the images.

  Args:
     is_training: bool specifying if train or validation dataset is needed.
  Returns:
     A batch of images and labels.
  """
    if is_training:
        dataset = dataset_factory.get_dataset('imagenet', 'train',
                                              FLAGS.dataset_dir)
    else:
        dataset = dataset_factory.get_dataset('imagenet', 'validation',
                                              FLAGS.dataset_dir)

    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        shuffle=is_training,
        common_queue_capacity=2 * FLAGS.batch_size,
        common_queue_min=FLAGS.batch_size)
    [image, label] = provider.get(['image', 'label'])

    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        'mobilenet_v1', is_training=is_training)

    image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size)

    images, labels = tf.train.batch(tensors=[image, label],
                                    batch_size=FLAGS.batch_size,
                                    num_threads=4,
                                    capacity=5 * FLAGS.batch_size)
    return images, labels
Esempio n. 2
0
def parse_function(filename):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string,
                                         channels=args.num_channel)

    if args.preprocessing_name and args.preprocessing_name in preprocessing_factory.preprocessing_fn_map:
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            args.preprocessing_name, is_training=False)
        image_decoded = image_preprocessing_fn(image_decoded, args.input_size,
                                               args.input_size)
    else:
        if not args.preprocessing_name:
            args.preprocessing_name = "base_preprocessing"
        preprocessing_f = util.get_attr(
            'preprocessing.%s' % args.preprocessing_name,
            "preprocessing_inference")
        if not preprocessing_f:
            preprocessing_f = util.get_attr('preprocessing.base_preprocessing',
                                            "preprocessing_inference")
        image_decoded = preprocessing_f(image_decoded,
                                        tf.convert_to_tensor(args.input_size),
                                        tf.convert_to_tensor(args.input_size),
                                        args)

    return image_decoded
Esempio n. 3
0
    def pre_process(self, example_proto, is_training):
        features = {"image/encoded": tf.FixedLenFeature((), tf.string, default_value=""),
                    "image/class/label": tf.FixedLenFeature((), tf.int64, default_value=0),
                    'image/height': tf.FixedLenFeature((), tf.int64, default_value=0),
                    'image/width': tf.FixedLenFeature((), tf.int64, default_value=0)
                    }

        parsed_features = tf.parse_single_example(example_proto, features)
        if self.config.preprocessing_name:
            image_preprocessing_fn = preprocessing_factory.get_preprocessing(self.config.preprocessing_name,
                                                                             is_training=is_training)
            image = tf.image.decode_image(parsed_features["image/encoded"], self.config.num_channel)
            image = tf.clip_by_value(
                image_preprocessing_fn(image, tf.convert_to_tensor(self.config.input_size),
                                       tf.convert_to_tensor(self.config.input_size)), -1, 1.0)
        else:
            image = tf.clip_by_value(tf.image.per_image_standardization(
                tf.image.resize_images(tf.image.decode_jpeg(parsed_features["image/encoded"], self.config.num_channel),
                                       [tf.convert_to_tensor(self.config.input_size),
                                        tf.convert_to_tensor(self.config.input_size)])), -1., 1.0)

        if len(parsed_features["image/class/label"].get_shape()) == 0:
            label = tf.one_hot(parsed_features["image/class/label"], self.config.num_class)
        else:
            label = parsed_features["image/class/label"]

        return image, label
def inference_on_image(bot_id, suffix, setting_id, image_file, network_name='inception_v4', return_labels=1):
    """
    Loads the corresponding model checkpoint, network function and preprocessing routine based on bot_id and network_name,
    restores the graph and runs it to the prediction enpoint with the image as input
    :param bot_id: bot_id, used to reference to correct model directory
    :param image_file: reference to the temporary image file to be classified
    :param network_name: name of the network type to be used
    :param return_labels: number of labels to return
    :return: the top n labels with probabilities, where n = return_labels
    """

    # Get the model path
    model_path = dirs.get_transfer_model_dir(bot_id+suffix, setting_id)

    # Get number of classes to predict
    protobuf_dir = dirs.get_transfer_proto_dir(bot_id, setting_id)
    number_of_classes = dataset_utils.get_number_of_classes_by_labels(protobuf_dir)

    # Get the preprocessing and network construction functions
    preprocessing_fn = preprocessing_factory.get_preprocessing(network_name, is_training=False)
    network_fn = network_factory.get_network_fn(network_name, number_of_classes)

    # Process the temporary image file into a Tensor of shape [widht, height, channels]
    image_tensor = tf.gfile.FastGFile(image_file, 'rb').read()
    image_tensor = tf.image.decode_image(image_tensor, channels=0)

    # Perform preprocessing and reshape into [network.default_width, network.default_height, channels]
    network_default_size = network_fn.default_image_size
    image_tensor = preprocessing_fn(image_tensor, network_default_size, network_default_size)

    # Create an input batch of size one from the preprocessed image
    input_batch = tf.reshape(image_tensor, [1, 299, 299, 3])

    # Create the network up to the Predictions Endpoint
    logits, endpoints = network_fn(input_batch)

    # Create a Saver() object to restore the network from the last checkpoint
    restorer = tf.train.Saver()

    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        # Restore the variables of the network from the last checkpoint and run the graph
        restorer.restore(sess, tf.train.latest_checkpoint(model_path))
        sess.run(endpoints)

        # Get the numpy array of predictions out of the
        predictions = endpoints['Predictions'].eval()[0]

    return map_predictions_to_labels(protobuf_dir, predictions, return_labels)
Esempio n. 5
0
def build_imagenet_graph(path):
    tf.reset_default_graph()
    print(path)

    filename_queue = tf.train.string_input_producer(
        tf.train.match_filenames_once(path + "/*.jpg"),
        num_epochs=1,
        shuffle=False,
        capacity=100)
    image_reader = tf.WholeFileReader()
    image_file_name, image_file = image_reader.read(filename_queue)

    image = tf.image.decode_jpeg(image_file, channels=3, fancy_upscaling=True)

    model_name = 'inception_resnet_v2'
    network_fn = nets_factory.get_network_fn(model_name,
                                             is_training=False,
                                             num_classes=1001)

    preprocessing_name = model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name, is_training=False)

    eval_image_size = network_fn.default_image_size

    image = image_preprocessing_fn(image, eval_image_size, eval_image_size)

    filenames, images = tf.train.batch([image_file_name, image],
                                       batch_size=100,
                                       num_threads=2,
                                       capacity=500)
    logits, _ = network_fn(images)

    variables_to_restore = slim.get_variables_to_restore()
    predictions = tf.argmax(logits, 1)

    return filenames, logits, predictions, variables_to_restore
def eval_model(candidate, N, F, save_dir, model_name):
  print("eval model")
  tf.logging.set_verbosity(tf.logging.INFO)
  with tf.Graph().as_default():
    tf_global_step = slim.get_or_create_global_step()

    ######################
    # Select the dataset #
    ######################
    dataset = dataset_factory.get_dataset(
        FLAGS.dataset_name, 'test', FLAGS.dataset_dir)

    ####################
    # Select the model #
    ####################
    network_fn = nets_factory.get_network_fn(
        FLAGS.model_name, candidate, N, F,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        is_training=False)

    ##############################################################
    # Create a dataset provider that loads data from the dataset #
    ##############################################################
    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        shuffle=False,
        common_queue_capacity=2 * FLAGS.batch_size,
        common_queue_min=FLAGS.batch_size)
    [image, label] = provider.get(['image', 'label'])
    label -= FLAGS.labels_offset

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name,
        is_training=False)

    eval_image_size = network_fn.default_image_size

    image = image_preprocessing_fn(image, eval_image_size, eval_image_size)

    FLAGS.batch_size = 100
    images, labels = tf.train.batch(
        [image, label],
        batch_size=FLAGS.batch_size,
        num_threads=FLAGS.num_preprocessing_threads,
        capacity=5 * FLAGS.batch_size)

    ####################
    # Define the model #
    ####################
    logits, _ = network_fn(images)

    if FLAGS.moving_average_decay:
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, tf_global_step)
      variables_to_restore = variable_averages.variables_to_restore(
          slim.get_model_variables())
      variables_to_restore[tf_global_step.op.name] = tf_global_step
    else:
      variables_to_restore = slim.get_variables_to_restore()

    predictions = tf.argmax(logits, 1)
    labels = tf.squeeze(labels)

    # Define the metrics:
    names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
        'Accuracy': slim.metrics.streaming_accuracy(predictions, labels),
       # 'Recall_5': slim.metrics.streaming_recall_at_k(
       #     logits, labels, 5),
    })

    # Print the summaries to screen.
    for name, value in names_to_values.items():
      summary_name = 'eval/%s' % name
      op = tf.summary.scalar(summary_name, value, collections=[])
      op = tf.Print(op, [value], summary_name)
      tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

    # TODO(sguada) use num_epochs=1
    if FLAGS.max_num_batches:
      num_batches = FLAGS.max_num_batches
    else:
      # This ensures that we make a single pass over all of the data.
      num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))

    FLAGS.checkpoint_path = FLAGS.train_dir
    if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
      checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
    else:
      checkpoint_path = FLAGS.checkpoint_path

    tf.logging.info('Evaluating %s' % checkpoint_path)

    final_op = [names_to_values['Accuracy']] #top1 accuracy to return
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    #time.sleep(60)
    pl.start()
    start_time = time.time()
    a = slim.evaluation.evaluate_once(
        master=FLAGS.master,
        checkpoint_path=checkpoint_path,
        logdir=FLAGS.eval_dir,
        session_config=config,
        num_evals=num_batches,
        eval_op=list(names_to_updates.values()),
        final_op = final_op,
        variables_to_restore=variables_to_restore)
    duration = time.time() - start_time
    pl.stop()
    
    data_list = pl.getDataTrace(nodeName='module/gpu', valType='power')
    pickle.dump(data_list, open(os.path.join(save_dir, model_name + '_data_list_final_{}_{}.pkl'.format(N,F)),'wb'))

    power_list = data_list[1]
    time_list = data_list[0]

    start, end = get_start_end(power_list)
    integration_time = time_list[end] - time_list[start]
    integration_energy = integrate_power(power_list, time_list, start, end)

    return integration_time, integration_energy
def train_model(candidate, N, F):
  print("train model")
  print(FLAGS.dataset_name)
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  tf.logging.set_verbosity(tf.logging.INFO)
  with tf.Graph().as_default():
    #######################
    # Config model_deploy #
    #######################
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=FLAGS.num_clones,
        clone_on_cpu=FLAGS.clone_on_cpu,
        replica_id=FLAGS.task,
        num_replicas=FLAGS.worker_replicas,
        num_ps_tasks=FLAGS.num_ps_tasks)

    # Create global_step
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

    ######################
    # Select the dataset #
    ######################
    dataset = dataset_factory.get_dataset(
        FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

    ######################
    # Select the network #
    ######################

    network_fn = nets_factory.get_network_fn(
        FLAGS.model_name,
        candidate, N, F,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        weight_decay=FLAGS.weight_decay,
        is_training=True)

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name,
        is_training=True)

    ##############################################################
    # Create a dataset provider that loads data from the dataset #
    ##############################################################
    with tf.device(deploy_config.inputs_device()):
      provider = slim.dataset_data_provider.DatasetDataProvider(
          dataset,
          num_readers=FLAGS.num_readers,
          common_queue_capacity=20 * FLAGS.batch_size,
          common_queue_min=10 * FLAGS.batch_size)
      [image, label] = provider.get(['image', 'label'])
      label -= FLAGS.labels_offset

      train_image_size = FLAGS.train_image_size or network_fn.default_image_size

      image = image_preprocessing_fn(image, train_image_size, train_image_size)

      images, labels = tf.train.batch(
          [image, label],
          batch_size=FLAGS.batch_size,
          num_threads=FLAGS.num_preprocessing_threads,
          capacity=5 * FLAGS.batch_size)
      labels = slim.one_hot_encoding(
          labels, dataset.num_classes - FLAGS.labels_offset)
      batch_queue = slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * deploy_config.num_clones)

    ####################
    # Define the model #
    ####################
    def clone_fn(batch_queue):
      """Allows data parallelism by creating multiple clones of network_fn."""
      images, labels = batch_queue.dequeue()
      logits, end_points = network_fn(images)

      #############################
      # Specify the loss function #
      #############################
      if 'AuxLogits' in end_points:
        slim.losses.softmax_cross_entropy(
            end_points['AuxLogits'], labels,
            label_smoothing=FLAGS.label_smoothing, weights=0.4,
            scope='aux_loss')
      slim.losses.softmax_cross_entropy(
          logits, labels, label_smoothing=FLAGS.label_smoothing, weights=1.0)
      return end_points

    # Gather initial summaries.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

    clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
    first_clone_scope = deploy_config.clone_scope(0)
    # Gather update_ops from the first clone. These contain, for example,
    # the updates for the batch_norm variables created by network_fn.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

    # Add summaries for end_points.
    end_points = clones[0].outputs
    for end_point in end_points:
      x = end_points[end_point]
      summaries.add(tf.summary.histogram('activations/' + end_point, x))
      summaries.add(tf.summary.scalar('sparsity/' + end_point,
                                      tf.nn.zero_fraction(x)))

    # Add summaries for losses.
    for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
      summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

    # Add summaries for variables.
    for variable in slim.get_model_variables():
      summaries.add(tf.summary.histogram(variable.op.name, variable))

    #################################
    # Configure the moving averages #
    #################################
    if FLAGS.moving_average_decay:
      moving_average_variables = slim.get_model_variables()
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, global_step)
    else:
      moving_average_variables, variable_averages = None, None

    #########################################
    # Configure the optimization procedure. #
    #########################################
    with tf.device(deploy_config.optimizer_device()):
      learning_rate = _configure_learning_rate(dataset.num_samples, global_step)
      optimizer = _configure_optimizer(learning_rate)
      summaries.add(tf.summary.scalar('learning_rate', learning_rate))

    if FLAGS.sync_replicas:
      # If sync_replicas is enabled, the averaging will be done in the chief
      # queue runner.
      optimizer = tf.train.SyncReplicasOptimizer(
          opt=optimizer,
          replicas_to_aggregate=FLAGS.replicas_to_aggregate,
          total_num_replicas=FLAGS.worker_replicas,
          variable_averages=variable_averages,
          variables_to_average=moving_average_variables)
    elif FLAGS.moving_average_decay:
      # Update ops executed locally by trainer.
      update_ops.append(variable_averages.apply(moving_average_variables))

    # Variables to train.
    variables_to_train = _get_variables_to_train()

    #  and returns a train_tensor and summary_op
    total_loss, clones_gradients = model_deploy.optimize_clones(
        clones,
        optimizer,
        var_list=variables_to_train)
    # Add total_loss to summary.
    summaries.add(tf.summary.scalar('total_loss', total_loss))

    # Create gradient updates.
    grad_updates = optimizer.apply_gradients(clones_gradients,
                                             global_step=global_step)
    update_ops.append(grad_updates)

    update_op = tf.group(*update_ops)
    with tf.control_dependencies([update_op]):
      train_tensor = tf.identity(total_loss, name='train_op')

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries), name='summary_op')


    ###########################
    # Kicks off the training. #
    ###########################
    slim.learning.train(
        train_tensor,
        logdir=FLAGS.train_dir,
        master=FLAGS.master,
        is_chief=(FLAGS.task == 0),
        init_fn=_get_init_fn(),
        summary_op=summary_op,
        number_of_steps=FLAGS.max_number_of_steps,
        log_every_n_steps=FLAGS.log_every_n_steps,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs,
        sync_optimizer=optimizer if FLAGS.sync_replicas else None)
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ####################
        # Select the model #
        ####################
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            is_training=False)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset,
            shuffle=False,
            common_queue_capacity=2 * FLAGS.batch_size,
            common_queue_min=FLAGS.batch_size)
        [image, label] = provider.get(['image', 'label'])
        label -= FLAGS.labels_offset

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        eval_image_size = FLAGS.eval_image_size or network_fn.default_image_size

        image = image_preprocessing_fn(image, eval_image_size, eval_image_size)

        images, labels = tf.train.batch(
            [image, label],
            batch_size=FLAGS.batch_size,
            num_threads=FLAGS.num_preprocessing_threads,
            capacity=5 * FLAGS.batch_size)

        ####################
        # Define the model #
        ####################
        logits, _ = network_fn(images)

        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        predictions = tf.argmax(logits, 1)
        labels = tf.squeeze(labels)

        # Define the metrics:
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'Accuracy':
            slim.metrics.streaming_accuracy(predictions, labels),
            'Recall_5':
            slim.metrics.streaming_recall_at_k(logits, labels, 5),
        })

        # Print the summaries to screen.
        for name, value in names_to_values.items():
            summary_name = 'eval/%s' % name
            op = tf.summary.scalar(summary_name, value, collections=[])
            op = tf.Print(op, [value], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # TODO(sguada) use num_epochs=1
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            # This ensures that we make a single pass over all of the data.
            num_batches = math.ceil(dataset.num_samples /
                                    float(FLAGS.batch_size))

        if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
            checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
        else:
            checkpoint_path = FLAGS.checkpoint_path

        tf.logging.info('Evaluating %s' % checkpoint_path)

        slim.evaluation.evaluate_once(
            master=FLAGS.master,
            checkpoint_path=checkpoint_path,
            logdir=FLAGS.eval_dir,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            variables_to_restore=variables_to_restore)
Esempio n. 9
0
def run_one_cnn(args):
    num_inj_per_layer = 1
    # Obtain target layer information
    layer_dict = {}
    with open(args.layer_path) as layer_csv:
        layer_reader = csv.reader(layer_csv, delimiter='\t')
        for row in layer_reader:
            layer_dict[row[0]] = row[1]
    print(layer_dict)
    layer_names = [
        layer_dict["Input tensor name:"], layer_dict["Weight tensor name:"],
        layer_dict["Output tensor name:"]
    ]
    layer_dims = [
        str2list(layer_dict["Input shape:"]),
        str2list(layer_dict["Weight shape:"]),
        str2list(layer_dict["Output shape:"])
    ]
    layer_stride = int(layer_dict["Layer stride:"])
    layer_padding = layer_dict["Layer padding:"]
    quant_min_max = str2list(layer_dict["Quant min max:"], True)

    # Obtain delta
    delta_set, inj_pos = delta_generator(args.network, args.precision,
                                         args.inj_type, [layer_names[2]],
                                         layer_dims[2], quant_min_max)

    # Then start running injection
    tf.reset_default_graph()

    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    np_image = x_test[args.image_id]
    image_label = y_test[args.image_id]

    image = tf.placeholder(tf.uint8, shape=[32, 32, 3])
    if 'ic' in args.network or 'mb' in args.network:
        pre_fn = get_preprocessing('inception', is_training=False)
    else:
        pre_fn = get_preprocessing('resnet_v1_50', is_training=False)

    post_image = pre_fn(image, 224, 224)
    images = tf.expand_dims(post_image, 0)

    # Cast the image for fp16
    if 'fp16' in args.precision:
        images = tf.cast(images, tf.float16)

    # Deploy the network
    arg_scope_fn = get_arg_scope(args.network, args.precision)
    network_fn = get_network(args.network, args.precision)

    # Need to feed in injection relating arguments
    with tf.contrib.slim.arg_scope(arg_scope_fn()):
        net, endpoints = network_fn(images,
                                    num_classes=10,
                                    is_training=False,
                                    inj_type=get_network_inj_type(
                                        args.precision, args.inj_type),
                                    inj_layer=[layer_names[2]],
                                    inj_pos=inj_pos,
                                    quant_min_max=quant_min_max)

    # Quantize the network if necessary
    if 'int8' in args.precision:
        tf.contrib.quantize.create_eval_graph()
    elif 'int16' in args.precision:
        tf.contrib.quantize.experimental_create_eval_graph(weight_bits=16,
                                                           activation_bits=16)

    # Create saver: For FP16, need extra handling for Logits
    all_variables = tf.get_collection_ref(tf.GraphKeys.GLOBAL_VARIABLES)

    if 'fp16' in args.precision:
        v_list = [
            v for v in all_variables
            if 'dense' not in v.name and 'delta' not in v.name
        ]
    elif 'rs' in args.network and 'int' in args.precision:
        v_list = [
            v for v in all_variables if 'delta' not in v.name
            and 'unit_1/bottleneck_v1/shortcut/act_quant' not in v.name
            and 'unit_2/bottleneck_v1/conv3/act_quant' not in v.name
            and 'unit_3/bottleneck_v1/conv3/act_quant' not in v.name
            and 'unit_4/bottleneck_v1/conv3/act_quant' not in v.name
            and 'unit_5/bottleneck_v1/conv3/act_quant' not in v.name
            and 'unit_6/bottleneck_v1/conv3/act_quant' not in v.name
        ]
    else:
        v_list = [v for v in all_variables if 'delta' not in v.name]

    saver = tf.train.Saver(var_list=v_list)

    # Create a session and run it
    with tf.Session() as sess:
        saver.restore(sess, args.ckpt_path)

        # For fp16, restore the dense part of the network
        if 'fp16' in args.precision:
            dense_var_dict = {
                'mb': 'MobilenetV1/Logits/Conv2d_1c_1x1/',
                'rs': 'resnet_v1_50/logits/',
                'ic': 'InceptionV1/Logits/Conv2d_0c_1x1/'
            }
            for variable in all_variables:
                if 'dense/kernel' in variable.name:
                    var = tf.contrib.framework.load_variable(
                        args.ckpt_path,
                        dense_var_dict[args.network[:2]] + 'weights')
                    sess.run(variable.assign(var[0, 0, :, :]))
                if 'dense/bias' in variable.name:
                    var = tf.contrib.framework.load_variable(
                        args.ckpt_path,
                        dense_var_dict[args.network[:2]] + 'biases')
                    sess.run(variable.assign(var))

        elif 'rs' in args.network and 'int' in args.precision:
            for variable in all_variables:
                if 'unit_1/bottleneck_v1/shortcut/act_quant' in variable.name:
                    var = tf.contrib.framework.load_variable(
                        args.ckpt_path,
                        re.sub('act_quant', 'conv_quant', variable.name))
                    sess.run(variable.assign(var))
                if 'bottleneck_v1/conv3/act_quant' in variable.name and 'unit_1' not in variable.name:
                    var = tf.contrib.framework.load_variable(
                        args.ckpt_path,
                        re.sub('act_quant', 'conv_quant', variable.name))
                    sess.run(variable.assign(var))

        # If we inject to input/weights or local controls
        if 'INPUT' in args.inj_type or 'WEIGHT' in args.inj_type or 'RD_BFLIP' in args.inj_type:
            layer = layer_names[2]
            delta_np = np.zeros(shape=layer_dims[2], dtype=np.float32)
            scope_string = ''
            if 'mb' in args.network:
                scope_string = 'MobilenetV1'
            elif 'rs' in args.network:
                scope_string = layer[:layer.rfind('/')]
            else:
                scope_string = layer[layer.find('/') + 1:layer.rfind('/')]
            with tf.variable_scope(scope_string, reuse=True):
                sess.run(
                    tf.get_variable('delta_{}'.format(
                        re.sub('\/', '_', layer[layer.rfind('/') + 1:])),
                                    trainable=False).assign(delta_np))
            # Get this layer's weight
            weight_tensor = tf.get_default_graph().get_tensor_by_name(
                layer_names[1])
            if 'RD_BFLIP' in args.inj_type:
                # In RD_BFLIP, input tensor means this layer's output
                input_tensor = tf.get_default_graph().get_tensor_by_name(
                    layer + '/Conv2D:0')
            else:
                # Get this layer's input for injecting to input or psum
                input_tensor = tf.get_default_graph().get_tensor_by_name(
                    layer_names[0])
            # Run the golden network
            wt, inp = sess.run([weight_tensor, input_tensor],
                               feed_dict={image: np_image})
            if 'INPUT' in args.inj_type or 'RD_BFLIP' in args.inj_type:
                if 'INPUT' in args.inj_type or 'RD_BFLIP' in args.inj_type:
                    t_a, t_b, t_c, t_d = inp.shape
                else:
                    t_a, t_b, t_c, t_d = layer_dims[2]
                p_a = np.random.randint(t_a)
                p_b = np.random.randint(t_b)
                p_c = np.random.randint(t_c)
                p_d = np.random.randint(t_d)

                golden_d = inp[p_a][p_b][p_c][p_d]
                if 'RD_BFLIP' in args.inj_type:
                    flip_bit, perturb = get_bit_flip_perturbation(
                        args.network, args.precision, golden_d, layer,
                        'rd_bflip')
                else:
                    flip_bit, perturb = get_bit_flip_perturbation(
                        args.network, args.precision, golden_d, layer, 'input')

                inp_perturb = np.zeros(inp.shape)
                inp_perturb[p_a][p_b][p_c][p_d] = perturb
                if 'RD_BFLIP' in args.inj_type:
                    delta_perturb = inp_perturb
                else:
                    delta_perturb = perturb_conv(inp_perturb, wt, layer_stride,
                                                 layer_padding == 'SAME',
                                                 layer_dims[2][-1])
            else:
                t_a, t_b, t_c, t_d = wt.shape
                p_a = np.random.randint(t_a)
                p_b = np.random.randint(t_b)
                p_c = np.random.randint(t_c)
                p_d = np.random.randint(t_d)
                golden_d = wt[p_a][p_b][p_c][p_d]
                flip_bit, perturb = get_bit_flip_perturbation(
                    args.network, args.precision, golden_d, layer, 'weight')
                wt_perturb = np.zeros(wt.shape)
                wt_perturb[p_a][p_b][p_c][p_d] = perturb
                delta_perturb = perturb_conv(inp, wt_perturb, layer_stride,
                                             layer_padding == 'SAME',
                                             layer_dims[2][-1])

            # If we only inject to 16W or 16C we need to reconfig the delta
            if '16' in args.inj_type and 'PSUM' not in args.inj_type:
                _, d_h, d_w, d_c = delta_perturb.shape
                delta_16 = np.zeros(delta_perturb.shape)
                pos_16 = []
                # Injecting to input: 16 neurons in 16 channels at a time
                if 'INPUT' in args.inj_type:
                    weight_d = layer_dims[1]
                    pad_type = layer_padding
                    if pad_type is 'VALID':
                        pad = 0
                    else:
                        pad = weight_d // 2
                    stride = layer_stride
                    start_h = np.random.randint(
                        max(0, (p_b + pad) // stride - weight_d + 1),
                        min((p_b + pad) // stride + 1, d_h))
                    start_w = np.random.randint(
                        max(0, (p_c + pad) // stride - weight_d + 1),
                        min((p_c + pad) // stride + 1, d_w))
                    start_c = np.random.randint(d_c // 16)
                    for i in range(16):
                        delta_16[0][start_h][start_w][
                            start_c +
                            i] = delta_perturb[0][start_h][start_w][start_c +
                                                                    i]
                        pos_16.append(start_h)
                        pos_16.append(start_w)
                        pos_16.append(16 * start_c + i)
                # Injecting to weight: 16 W at a time
                else:
                    start_p = np.random.randint(d_h * d_w // 16)
                    # It will only affect neurons in p_d
                    start_c = p_d
                    for i in range(16):
                        # If it doesn't have 16, then just break
                        if start_p * 16 + i >= d_h * d_w:
                            break
                        elem_h = (start_p * 16 + i) // d_w
                        elem_w = (start_p * 16 + i) % d_w
                        delta_16[0][elem_h][elem_w][start_c] = delta_perturb[
                            0][elem_h][elem_w][start_c]
                        pos_16.append(elem_h)
                        pos_16.append(elem_w)
                        pos_16.append(start_c)

                delta_perturb = delta_16
            # Assign delta_perturb back to the variable delta
            with tf.variable_scope(scope_string, reuse=True):
                sess.run(
                    tf.get_variable('delta_{}'.format(
                        re.sub('\/', '_', layer[layer.rfind('/') + 1:])),
                                    trainable=False).assign(delta_perturb))
            # Then run the network again
            if 'mb' in args.network or 'ic' in args.network:
                lgt, prd = sess.run(
                    [endpoints['Logits'][0], endpoints['Predictions'][0]],
                    feed_dict={image: np_image})
            else:
                lgt, prd = sess.run([
                    endpoints['resnet_v1_50/spatial_squeeze'][0],
                    endpoints['predictions'][0]
                ],
                                    feed_dict={image: np_image})

            # Get a sorted label
            network_labels = np.argsort(lgt)[::-1]

        # If we inject to neuron directly
        else:
            layer = layer_names[2]
            delta_np = np.zeros(shape=layer_dims[2], dtype=np.float32)
            for n_j in range(num_inj_per_layer):
                layer_pos = inj_pos[layer]
                delta_np[0][layer_pos[n_j][0]][layer_pos[n_j][1]][
                    layer_pos[n_j][2]] = delta_set[layer][n_j]

            scope_string = ''
            if 'mb' in args.network:
                scope_string = 'MobilenetV1'
            elif 'rs' in args.network:
                scope_string = layer[:layer.rfind('/')]
            else:
                scope_string = layer[layer.find('/') + 1:layer.rfind('/')]

            with tf.variable_scope(scope_string, reuse=True):
                sess.run(
                    tf.get_variable('delta_{}'.format(
                        re.sub('\/', '_', layer[layer.rfind('/') + 1:])),
                                    trainable=False).assign(delta_np))

            op_list = []
            for node in tf.get_default_graph().as_graph_def().node:
                if 'Conv2D' in node.name:
                    op_list.append(node.name + ':0')

            # Run the network
            if 'mb' in args.network or 'ic' in args.network:
                ops, lgt, prd = sess.run([
                    op_list, endpoints['Logits'][0],
                    endpoints['Predictions'][0]
                ],
                                         feed_dict={image: np_image})
            else:
                ops, lgt, prd = sess.run([
                    op_list, endpoints['resnet_v1_50/spatial_squeeze'][0],
                    endpoints['predictions'][0]
                ],
                                         feed_dict={image: np_image})

            # Get a sorted label
            network_labels = np.argsort(lgt)[::-1]

    print(
        "After injection, the network label becomes {}".format(network_labels))
def run_transfer_learning(root_model_dir, bot_model_dir, protobuf_dir, model_name='inception_v4',
                          dataset_split_name='train',
                          dataset_name='bot',
                          checkpoint_exclude_scopes=None,
                          trainable_scopes=None,
                          max_train_time_sec=None,
                          max_number_of_steps=None,
                          log_every_n_steps=None,
                          save_summaries_secs=None,
                          optimization_params=None):
    """
    Starts the transfer learning of a model in a tensorflow session
    :param root_model_dir: Directory containing the root models pretrained checkpoint files
    :param bot_model_dir: Directory where the transfer learned model's checkpoint files are written to
    :param protobuf_dir: Directory for the dataset factory to load the bot's training data from
    :param model_name: name of the network model for the net factory to provide the correct network and preprocesing fn
    :param dataset_split_name: 'train' or 'validation'
    :param dataset_name: triggers the dataset factory to load a bot dataset
    :param checkpoint_exclude_scopes: Layers to exclude when restoring the models variables
    :param trainable_scopes: Layers to train from the restored model
    :param max_train_time_sec: time boundary to stop training after in seconds
    :param max_number_of_steps: maximum number of steps to run
    :param log_every_n_steps: write a log after every nth optimization step
    :param save_summaries_secs: save summaries to disc every n seconds
    :param optimization_params: parameters for the optimization
    :return: 
    """
    if not optimization_params:
        optimization_params = OPTIMIZATION_PARAMS

    if not max_number_of_steps:
        max_number_of_steps = _MAX_NUMBER_OF_STEPS

    if not checkpoint_exclude_scopes:
        checkpoint_exclude_scopes = _CHECKPOINT_EXCLUDE_SCOPES

    if not trainable_scopes:
        trainable_scopes = _TRAINABLE_SCOPES

    if not max_train_time_sec:
        max_train_time_sec = _MAX_TRAIN_TIME_SECONDS

    if not log_every_n_steps:
        log_every_n_steps = _LOG_EVERY_N_STEPS

    if not save_summaries_secs:
        save_summaries_secs = _SAVE_SUMMARRIES_SECS

    tf.logging.set_verbosity(tf.logging.INFO)

    with tf.Graph().as_default():
        #######################
        # Config model_deploy #
        #######################
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=_NUM_CLONES,
            clone_on_cpu=_CLONE_ON_CPU,
            replica_id=_TASK,
            num_replicas=_WORKER_REPLICAS,
            num_ps_tasks=_NUM_PS_TASKS)

        # Create global_step
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(
            dataset_name, dataset_split_name, protobuf_dir)

        ######################
        # Select the network #
        ######################
        network_fn = nets_factory.get_network_fn(
            model_name,
            num_classes=(dataset.num_classes - _LABELS_OFFSET),
            weight_decay=OPTIMIZATION_PARAMS['weight_decay'],
            is_training=True,
            dropout_keep_prob=OPTIMIZATION_PARAMS['dropout_keep_prob'])

        #####################################
        # Select the preprocessing function #
        #####################################
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            model_name,
            is_training=True)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        with tf.device(deploy_config.inputs_device()):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=_NUM_READERS,
                common_queue_capacity=20 * _BATCH_SIZE,
                common_queue_min=10 * _BATCH_SIZE)
            [image, label] = provider.get(['image', 'label'])
            label -= _LABELS_OFFSET

            train_image_size = network_fn.default_image_size

            image = image_preprocessing_fn(image, train_image_size, train_image_size)

            images, labels = tf.train.batch(
                [image, label],
                batch_size=_BATCH_SIZE,
                num_threads=_NUM_PREPROCESSING_THREADS,
                capacity=5 * _BATCH_SIZE)
            labels = slim.one_hot_encoding(
                labels, dataset.num_classes - _LABELS_OFFSET)
            batch_queue = slim.prefetch_queue.prefetch_queue(
                [images, labels], capacity=2 * deploy_config.num_clones)

        ####################
        # Define the model #
        ####################
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple clones of network_fn."""
            images, labels = batch_queue.dequeue()
            logits, end_points = network_fn(images)

            #############################
            # Specify the loss function #
            #############################
            if 'AuxLogits' in end_points:
                tf.losses.softmax_cross_entropy(
                    logits=end_points['AuxLogits'], onehot_labels=labels,
                    label_smoothing=_LABEL_SMOOTHING, weights=0.4, scope='aux_loss')
            tf.losses.softmax_cross_entropy(
                logits=logits, onehot_labels=labels,
                label_smoothing=_LABEL_SMOOTHING, weights=1.0)
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(tf.summary.scalar('sparsity/' + end_point,
                                            tf.nn.zero_fraction(x)))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        #################################
        # Configure the moving averages #
        #################################
        if OPTIMIZATION_PARAMS['moving_average_decay']:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                OPTIMIZATION_PARAMS['moving_average_decay'], global_step)
        else:
            moving_average_variables, variable_averages = None, None

        #########################################
        # Configure the optimization procedure. #
        #########################################
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = _configure_learning_rate(dataset.num_samples, global_step)
            optimizer = _configure_optimizer(learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if _SYNC_REPLICAS:
            # If sync_replicas is enabled, the averaging will be done in the chief
            # queue runner.
            optimizer = tf.train.SyncReplicasOptimizer(
                opt=optimizer,
                replicas_to_aggregate=_REPLICAS_TO_AGGREGATE,
                variable_averages=variable_averages,
                variables_to_average=moving_average_variables,
                replica_id=tf.constant(_TASK, tf.int32, shape=()),
                total_num_replicas=_WORKER_REPLICAS)
        elif OPTIMIZATION_PARAMS['moving_average_decay']:
            # Update ops executed locally by trainer.
            update_ops.append(variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = _get_variables_to_train(trainable_scopes)

        #  and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones,
            optimizer,
            var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)

        update_op = tf.group(*update_ops)
        train_tensor = control_flow_ops.with_dependencies([update_op], total_loss,
                                                          name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                           first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        ###########################
        # Kicks off the training. #
        ###########################
        slim.learning.train(
            train_tensor,
            logdir=bot_model_dir,
            train_step_fn=train_step,  # Manually added a custom train step to stop after max_time
            train_step_kwargs=_train_step_kwargs(logdir=bot_model_dir, max_train_time_seconds=max_train_time_sec),
            master=_MASTER,
            is_chief=(_TASK == 0),
            init_fn=_get_init_fn(root_model_dir, bot_model_dir, checkpoint_exclude_scopes),
            summary_op=summary_op,
            # number_of_steps=max_number_of_steps,
            log_every_n_steps=log_every_n_steps,
            save_summaries_secs=save_summaries_secs,
            save_interval_secs=_SAVE_INTERNAL_SECS,
            sync_optimizer=optimizer if _SYNC_REPLICAS else None)
Esempio n. 11
0
File: rcnn.py Progetto: yekeren/VCR
def RCNN(inputs, proposals, options, is_training=True):
  """Runs RCNN model on the `inputs`.

  Args:
    inputs: Input image, a [batch, height, width, 3] uint8 tensor. The pixel
      values are in the range of [0, 255].
    proposals: Boxes used to crop the image features, using normalized
      coordinates. It should be a [batch, max_num_proposals, 4] float tensor
      denoting [y1, x1, y2, x2].
    options: A fast_rcnn_pb2.FastRCNN proto.
    is_training: If true, the model shall be executed in training mode.

  Returns:
    A [batch, max_num_proposals, feature_dims] tensor.

  Raises:
    ValueError if options is invalid.
  """
  if not isinstance(options, rcnn_pb2.RCNN):
    raise ValueError('The options has to be a rcnn_pb2.RCNN proto!')
  if inputs.dtype != tf.uint8:
    raise ValueError('The inputs has to be a tf.uint8 tensor.')

  net_fn = nets_factory.get_network_fn(name=options.feature_extractor_name,
                                       num_classes=1001)
  default_image_size = getattr(net_fn, 'default_image_size', 224)

  # Preprocess image.
  preprocess_fn = preprocessing_factory.get_preprocessing(
      options.feature_extractor_name, is_training=False)
  inputs = preprocess_fn(inputs,
                         output_height=None,
                         output_width=None,
                         crop_image=False)

  # Crop and resize images.
  batch = proposals.shape[0]
  max_num_proposals = tf.shape(proposals)[1]

  box_ind = tf.expand_dims(tf.range(batch), axis=-1)
  box_ind = tf.tile(box_ind, [1, max_num_proposals])

  cropped_inputs = tf.image.crop_and_resize(
      inputs,
      boxes=tf.reshape(proposals, [-1, 4]),
      box_ind=tf.reshape(box_ind, [-1]),
      crop_size=[default_image_size, default_image_size])

  # Run CNN.
  _, end_points = net_fn(cropped_inputs)
  outputs = end_points[options.feature_extractor_endpoint]
  outputs = tf.reshape(outputs, [batch, max_num_proposals, -1])

  init_fn = slim.assign_from_checkpoint_fn(
      options.feature_extractor_checkpoint,
      slim.get_model_variables(options.feature_extractor_scope))

  def _init_from_ckpt_fn(_, sess):
    return init_fn(sess)

  return outputs, _init_from_ckpt_fn
Esempio n. 12
0
def eval(bot_id,
         bot_suffix,
         setting_id=None,
         dataset_split='train',
         dataset_name='bot',
         model_name='inception_v4',
         preprocessing=None,
         moving_average_decay=None,
         tf_master=''):
    full_id = bot_id + bot_suffix
    if setting_id:
        protobuf_dir = dirs.get_transfer_proto_dir(bot_id, setting_id)
    else:
        protobuf_dir = dirs.get_protobuf_dir(bot_id)

    _check_dir(protobuf_dir)

    print("READIND FROM %s" % (protobuf_dir))

    performance_data_dir = dirs.get_performance_data_dir(bot_id)
    #    if os.listdir(performance_data_dir):
    #        raise ValueError('%s is not empty' % performance_data_dir)

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(dataset_name, dataset_split,
                                              protobuf_dir)

        ####################
        # Select the model #
        ####################
        network_fn = nets_factory.get_network_fn(
            model_name,
            num_classes=(dataset.num_classes - LABELS_OFFSET),
            is_training=False)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset,
            shuffle=False,
            common_queue_capacity=2 * BATCH_SIZE,
            common_queue_min=BATCH_SIZE)
        [image, label] = provider.get(['image', 'label'])
        label -= LABELS_OFFSET

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = preprocessing or model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        eval_image_size = EVAL_IMAGE_SIZE or network_fn.default_image_size

        image = image_preprocessing_fn(image, eval_image_size, eval_image_size)

        images, labels = tf.train.batch([image, label],
                                        batch_size=BATCH_SIZE,
                                        num_threads=NUM_THREADS,
                                        capacity=5 * BATCH_SIZE)

        ####################
        # Define the model #
        ####################
        logits, _ = network_fn(images)

        if moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        predictions = tf.argmax(logits, 1)
        labels = tf.squeeze(labels)

        # Define the metrics:
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
            'Accuracy':
            slim.metrics.streaming_accuracy(predictions, labels),
            'Recall_5':
            slim.metrics.streaming_recall_at_k(logits, labels, 5),
        })

        # Print the summaries to screen.
        for name, value in names_to_values.items():
            summary_name = 'eval/%s' % name
            op = tf.summary.scalar(summary_name, value, collections=[])
            op = tf.Print(op, [value], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # TODO(sguada) use num_epochs=1
        if MAX_NUM_BATCHES:
            num_batches = MAX_NUM_BATCHES
        else:
            # This ensures that we make a single pass over all of the data.
            num_batches = math.ceil(dataset.num_samples / float(BATCH_SIZE))

        print(dataset.num_samples)
        print(dataset.num_classes)