def _main(name): import tensorflow as tf starter = get_starter(name) continue_on_error = FLAGS.continue_on_error if starter.has_checkpoint: try: graph = tf.Graph() with graph.as_default(): image = tf.placeholder(shape=(None, 311, 311, 3), dtype=tf.float32) fn = starter.get_network_fn(is_training=True) fn(image) var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) saver = tf.train.Saver(var_list=var_list) with tf.Session(graph=graph) as sess: ckpt = starter.get_checkpoint() saver.restore(sess, ckpt) return True except Exception: if continue_on_error: return False else: raise else: return None
def _main(name): starter = get_starter(name) print(name) if starter.url is not None: print(starter.get_checkpoint()) else: print('No url') print('---------------------------------------')
def main(_): from tensorflow.python.tools.inspect_checkpoint import \ print_tensors_in_checkpoint_file from slim_start import get_starter name = FLAGS.name starter = get_starter(name) latest_ckp = starter.get_checkpoint() print_tensors_in_checkpoint_file(latest_ckp, tensor_name='', all_tensors=False, all_tensor_names=True)
def _main(name): starter = get_starter(name) print(name) if starter.url is not None: if starter.clean_archive(): print('Cleaned') else: print('No archive present') else: print('No url') print('---------------------------------------')
def main(_): import tensorflow as tf from slim_start import get_starter name = FLAGS.name starter = get_starter(name) image = tf.zeros((2, 224, 224, 3), dtype=tf.float32) with tf.contrib.slim.arg_scope(starter.get_scope()): out, endpoints = starter.get_unscoped_network_fn( num_classes=None)(image) if FLAGS.endpoints: for k, v in endpoints.items(): print('%s: %s' % (k, str(v.shape))) else: vars = tf.get_collection(FLAGS.collection, scope=FLAGS.scope) for var in vars: print(var.name)
loss = slim.losses.get_total_loss() optimizer = tf.train.AdamOptimizer() train_op = slim.learning.create_train_op(loss, optimizer) kwargs['loss'] = loss kwargs['eval_metric_ops'] = dict(accuracy=accuracy) kwargs['train_op'] = train_op return tf.estimator.EstimatorSpec(**kwargs) name = 'mobilenet_v2' weight_decay = 0.0 num_classes = 10 bn_decay = 0.9 starter = get_starter(name) vars_to_warm_start = 'MobilenetV2/*' warm_start_settings = tf.estimator.WarmStartSettings(starter.get_checkpoint(), vars_to_warm_start) def logits_fn(features, mode): is_training = mode == ModeKeys.TRAIN f = starter.get_scoped_network_fn(is_training=is_training, weight_decay=weight_decay, bn_decay=bn_decay) x, _ = f(features, base_only=True) x = tf.reduce_mean(x, axis=(1, 2)) x = tf.layers.dense(x, num_classes) return x