Esempio n. 1
0
def run_trial_test(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    trial = Trial(spec, info_space)
    trial_data = trial.run()
    assert isinstance(trial_data, pd.DataFrame)
Esempio n. 2
0
def run_benchmark(spec, const):
    benchmark_specs = benchmarker.generate_specs(spec, const)
    logger.info('Running benchmark')
    for spec_name, benchmark_spec in benchmark_specs.items():
        # run only if not already exist; benchmark mode only
        if not any(spec_name in filename for filename in os.listdir('data')):
            info_space = InfoSpace()
            info_space.tick('experiment')
            Experiment(benchmark_spec, info_space).run()
Esempio n. 3
0
def run_trial_test(spec_file, spec_name=False, distributed=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    if distributed:
        spec['meta']['distributed'] = True
        if os.environ.get('CI') != 'true':  # CI has not enough CPU
            spec['meta']['max_session'] = 2
    trial = Trial(spec, info_space)
    trial_data = trial.run()
    assert isinstance(trial_data, pd.DataFrame)
Esempio n. 4
0
def run_trial_test_dist(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = spec_util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    spec['meta']['distributed'] = True
    spec['meta']['max_session'] = 2

    trial = Trial(spec, info_space)
    # manually run the logic to obtain global nets for testing to ensure global net gets updated
    global_nets = trial.init_global_nets()
    # only test first network
    if ps.is_list(global_nets):  # multiagent only test first
        net = list(global_nets[0].values())[0]
    else:
        net = list(global_nets.values())[0]
    session_datas = trial.parallelize_sessions(global_nets)
    trial.session_data_dict = {data.index[0]: data for data in session_datas}
    trial_data = analysis.analyze_trial(trial)
    trial.close()
    assert isinstance(trial_data, pd.DataFrame)
Esempio n. 5
0
def run_by_mode(spec_file, spec_name, lab_mode):
    logger.info(f'Running lab in mode: {lab_mode}')
    spec = spec_util.get(spec_file, spec_name)
    info_space = InfoSpace()
    os.environ['PREPATH'] = util.get_prepath(spec, info_space)
    reload(logger)  # to set PREPATH properly
    # expose to runtime, '@' is reserved for 'enjoy@{prepath}'
    os.environ['lab_mode'] = lab_mode.split('@')[0]
    if lab_mode == 'search':
        info_space.tick('experiment')
        Experiment(spec, info_space).run()
    elif lab_mode == 'train':
        info_space.tick('trial')
        Trial(spec, info_space).run()
    elif lab_mode.startswith('enjoy'):
        prepath = lab_mode.split('@')[1]
        spec, info_space = util.prepath_to_spec_info_space(prepath)
        Session(spec, info_space).run()
    elif lab_mode == 'generate_benchmark':
        benchmarker.generate_specs(spec, const='agent')
    elif lab_mode == 'benchmark':
        # TODO allow changing const to env
        run_benchmark(spec, const='agent')
    elif lab_mode == 'dev':
        spec = util.override_dev_spec(spec)
        info_space.tick('trial')
        Trial(spec, info_space).run()
    else:
        logger.warn(
            'lab_mode not recognized; must be one of `search, train, enjoy, benchmark, dev`.'
        )
Esempio n. 6
0
def run_by_mode(spec_file, spec_name, lab_mode):
    logger.info(f'Running lab in mode: {lab_mode}')
    spec = spec_util.get(spec_file, spec_name)
    info_space = InfoSpace()
    analysis.save_spec(spec, info_space, unit='experiment')

    # '@' is reserved for 'enjoy@{prepath}'
    os.environ['lab_mode'] = lab_mode.split('@')[0]
    os.environ['PREPATH'] = util.get_prepath(spec, info_space)
    reload(logger)  # to set PREPATH properly

    if lab_mode == 'search':
        info_space.tick('experiment')
        Experiment(spec, info_space).run()
    elif lab_mode.startswith('train'):
        if '@' in lab_mode:
            prepath = lab_mode.split('@')[1]
            spec, info_space = util.prepath_to_spec_info_space(prepath)
        else:
            info_space.tick('trial')
        Trial(spec, info_space).run()
    elif lab_mode.startswith('enjoy'):
        prepath = lab_mode.split('@')[1]
        spec, info_space = util.prepath_to_spec_info_space(prepath)
        Session(spec, info_space).run()
    elif lab_mode.startswith('enjoy'):
        prepath = lab_mode.split('@')[1]
        spec, info_space = util.prepath_to_spec_info_space(prepath)
        Session(spec, info_space).run()
    elif lab_mode == 'dev':
        spec = util.override_dev_spec(spec)
        info_space.tick('trial')
        Trial(spec, info_space).run()
    else:
        logger.warn('lab_mode not recognized; must be one of `search, train, enjoy, benchmark, dev`.')
Esempio n. 7
0
def run_new_mode(spec_file, spec_name, lab_mode):
    '''Run to generate new data with `search, train, dev`'''
    spec = spec_util.get(spec_file, spec_name)
    info_space = InfoSpace()
    analysis.save_spec(spec, info_space, unit='experiment')  # first save the new spec
    if lab_mode == 'search':
        info_space.tick('experiment')
        Experiment(spec, info_space).run()
    elif lab_mode.startswith('train'):
        info_space.tick('trial')
        Trial(spec, info_space).run()
    elif lab_mode == 'dev':
        spec = spec_util.override_dev_spec(spec)
        info_space.tick('trial')
        Trial(spec, info_space).run()
    else:
        raise ValueError(f'Unrecognizable lab_mode not of {TRAIN_MODES}')