Esempio n. 1
0
def find_obj(path, coordinates_RA, coordinates_DEC, obj_id):

   file_list = [] #list to recive the fits files names that are in path
   for file2 in glob.glob( os.path.join(path, '*.fits') ):
     file_list.append(file2)
   del file2
   file_list.sort()


   for i in range(0,len(file_list)):
      print "Working in file:",file_list[i][len(path)+1:]

      im_hdulist = pyfits.open(file_list[i])
      im_header = im_hdulist[0].header

      n_axis1 = im_header['NAXIS1']
      n_axis2 = im_header['NAXIS2']

      #print n_axis1, n_axis1

      for j in range(0,len(coordinates_RA)):
         coord_XY = radec2xy(file_list[i],coordinates_RA[j],coordinates_DEC[j]) 
         if coord_XY[0]>0 and coord_XY[0]<n_axis1 and coord_XY[1]>0 and coord_XY[1]<n_axis2:
            print j, coord_XY
            comand = 'imcp.py ' + str(file_list[i]) + ' ' + str(coord_XY[0]) + ' ' + str(coord_XY[1]) + ' -s 900,900 -o ' +  '_'  + str(obj_id[n]) + "_" + str(file_list[i][len(path)+1:]) + '_' #comando para fazer o corte nas imagens
Esempio n. 2
0
def find_cs82_image():
    """
    Function to find in which cs82 image the redmapper clusters are and create
    the command to make a cut_out using imcp.py from sltools
    Input
     -
    Output
     -
    #FIXME - finish documentation
    """
    print "find_cs82_im"
    red_data, red_names = rc.read_catalog("cs82_redmapper")

    limits, imgs = cor.cs82_limits()
    cs82_path = os.environ["CS82_IMAGE_DIR"]

    for i in range(len(limits)):
        #print imgs[i]
        """
        if limits[i][0][1] > 300 and limits[i][0][0] < 300:
            print imgs[i]
            print limits[i]
        """

        str_out = ""
        for j in range(len(red_data["RA"])):

            if red_data["RA"][j] < limits[i][0][1] and \
               red_data["RA"][j] > limits[i][0][0] and \
               red_data["DEC"][j] < limits[i][1][1] and \
               red_data["DEC"][j] > limits[i][1][0]:
                hdu = pyfits.open(imgs[i])
                hdr = hdu[0].header
                pix_xy = sltools_wcs_conv.radec2xy(hdr, red_data["RA"][j], \
                                                   red_data["DEC"][j])

                str_out = "imcp.py " + imgs[i] + " "
                str_out += str(pix_xy[0]) + " " + str(pix_xy[1]) + " "
                str_out += "-s 600,600 -J -o "
                str_out += str(red_data["MEM_MATCH_ID"][j]) + "_"
                str_out += imgs[i][len(cs82_path) + 1:len(cs82_path) + 10]
                if pix_xy[0] > 0 and  pix_xy[0] < 21000 and \
                   pix_xy[1] > 0 and  pix_xy[1] < 21000:
                    print str_out
Esempio n. 3
0
def find_sdss_image():
    """
    Function to make create the sdss image for the redmapper clusters
    Input
     -
    Output
     -
    #FIXME - finish documentation
    """
    red_data, red_names = rc.read_catalog("cs82_redmapper")

    str_swarp = ""
    str_imcp = ""
    #    i_tmp = 897

    for i in range(31, len(red_data["RA"])):
        time.sleep(1)
        print i
        names = si.get_sdss_tiles_within(red_data["RA"][i], \
                              red_data["DEC"][i], "i", win = 5, stripe82 = True)

        sdss_out_im = str(red_data["MEM_MATCH_ID"][i]) + "_sdss_i.fits "

        str_swarp = "swarp -IMAGEOUT_NAME " + sdss_out_im
        for j in range(len(names)):
            str_swarp += names[j] + " "

        os.system(str_swarp)
        hdu = pyfits.open(sdss_out_im)
        hdr = hdu[0].header
        pix_xy = sltools_wcs_conv.radec2xy(hdr, red_data["DEC"][i], \
                                            red_data["RA"][i])

        str_imcp = "imcp.py " + sdss_out_im + " "
        str_imcp += str(pix_xy[0]) + " " + str(pix_xy[1])
        str_imcp += " -s 600,600 -J -o " + sdss_out_im[:-6]
        os.system(str_imcp)
Esempio n. 4
0
def catalog2cutout_pipe(im_path, catalog_path, dim):
    """
    make cuts in images given a coordinate catalogue


    Input:
     - im_path : str
        Path for a fits image

     - catalog_path : str
        Path for a fits catalog

     - dim : str
        Output stamps shape

    
    ---
    """
    im_lim = get_ra_dec_limits(im_path)
    im_lim_xy = (radec2xy(im_path, im_lim[0][0], im_lim[1][0]),
                 radec2xy(im_path, im_lim[0][1], im_lim[1][1]))

    im_x_min = min(im_lim_xy[0][0], im_lim_xy[1][0])
    im_x_max = max(im_lim_xy[0][0], im_lim_xy[1][0])

    im_y_min = min(im_lim_xy[0][1], im_lim_xy[1][1])
    im_y_max = max(im_lim_xy[0][1], im_lim_xy[1][1])

    hdulist_cat = pyfits.open(catalog_path)

    hdulist_im = pyfits.open(im_path, memmap=True)
    im_header = hdulist_im[0].header
    im_data = hdulist_im[0].data

    #print hdulist_im.filename()

    cat_coord = zip(hdulist_cat[1].data.field("RA"),
                    hdulist_cat[1].data.field("DEC"))

    cat_coord_xy = []
    coord_ok = []
    for i in range(len(cat_coord)):
        cat_coord_xy.append(radec2xy( im_path, \
                                      cat_coord[i][0], cat_coord[i][1]) )

        test_lim_x = cat_coord_xy[i][0] > im_x_min \
                     and cat_coord_xy[i][0] < im_x_max
        test_lim_y = cat_coord_xy[i][1] > im_y_min \
                     and cat_coord_xy[i][1] < im_y_max
        if test_lim_x and test_lim_y:
            coord_ok.append(cat_coord_xy[i])

    dx, dy = string.split(dim, sep=',')
    imgcut_out, hdr_out = cutout( im_data, im_header, coord_unit='pixel', \
                                    xo=coord_ok[0][0], yo=coord_ok[0][1], \
                        size_unit='pixel', x_size=dx, y_size=dy, mask=None)

    for i in range(len(coord_ok)):
        outfits = "out_catalog2cutout_" + str(i) + ".fits"
        pyfits.writeto(outfits, imgcut_out, hdr_out)

    return 0
Esempio n. 5
0
def cutout( img, hdr=None, coord_unit='pixel', xo=0, yo=0, size_unit='pixel', x_size=0, y_size=0, mask=None ):
    """
    Do a snapshot from given fits image.

    cutout( ndarray, ...) -> (ndarray, header)

    The function can deal with 'pixel' and 'degrees' cordinate units. As input, besides the image FITS 
    filename (input_file), it receives a central position (xo,yo) and side lengths (x_size,y_size) for
    output image position and dimensioning. Function returns two values: a numpy.array with resultant 
    image pixel intensities and respective header object.

    In addition, an image mask information can be given to use as interest region selection. 'mask' is
    expected to be a numpy.where like structure (i.e, mask=numpy.where()). If given, returned image will
    have all pixels null except the ones listed in 'mask' parameter.

    If 'xo=0' and 'yo=0', given image (input_file) central pixel will be chosen as (xo,yo).
    If 'x_size=0' and 'y_size=0', half length of each side will be used for output dimensions.


    Input:
     - img        numpy.ndarray : Image array (ndim=2,dtype=float)
     - hdr        pyfits.header : Image (FITS) header
     - coord_unit           str : Position (xo,yo) units ('pixel','degrees')
     - xo                   int : Centroid (horizontal) position for cutting window
     - yo                   int : Centroid (vertical) position for cutting window
     - size_unit            str : Window sizes (x_size,y_size) units ('pixel','degrees')
     - x_size               int : Horizontal cutting window size
     - y_size               int : Vertical cutting window size
     - mask   (ndarray,ndarray) : Tuple with index arrays (Output like numpy.where())

    Output:
     - (ndarray, header) : Resultant image array and (updated) header instance
    
    ---
    """

    image = img;

    logging.debug("Input parameters (type(image),header,coord_unit,xo,yo,size_unit,x_size,y_size,mask): %s",(type(image),hdr,coord_unit,xo,yo,size_unit,x_size,y_size,mask));

    xo=float(xo);
    yo=float(yo);
    x_size=float(x_size);
    y_size=float(y_size);

    imagem = image;
    
    # Initialize some variables..
    #
    x_diff = 0;   x_edge = 0;
    y_diff = 0;   y_edge = 0;
    x_fin = 0;   x_ini = 0;
    y_fin = 0;   y_ini = 0;


    if ( hdr ):
        dimpix = hf.get_pixelscale( hdr );
        logging.info("Pixel_scale: %s",dimpix);

    y_img_size, x_img_size = imagem.shape;
    logging.debug("Input image shape: %s",(x_img_size,y_img_size));

    # Get the side sides (at least, 1!) and transform for the size_unit if necessary..
    #
    x_cut_size = float(x_size);
    y_cut_size = float(y_size);

    if ( size_unit == 'degrees' ):
        x_cut_size = int(float(x_cut_size)/dimpix);
        y_cut_size = int(float(y_cut_size)/dimpix);

    # And if no side size was given, define a default value correspondig to half of original image..
    #
    if not ( x_size ):
        x_cut_size = int(x_img_size/2);
        logging.warning("'x_size' not given. Using half of image x side(%d)", x_cut_size);

    if not ( y_size ):
        y_cut_size = int(y_img_size/2);
        logging.warning("'y_size' not given. Using half of image y side(%d)", y_cut_size);

    logging.debug("Output image shape: %s",(x_cut_size,y_cut_size));

    # Check requested output.vs.input image sizes..
    #
    if ( x_cut_size == x_img_size and y_cut_size == y_img_size ):
        logging.warning("Requested output sizes are the same as input image. Returning image and header unchanged.");
        return (imagem,hdr);

    # Verify central coordinates values..
    #
    if ( coord_unit == 'pixel' and (xo != 0 and yo != 0) ):
        x_halo = int(float(xo));
        y_halo = int(float(yo));

    elif ( coord_unit == 'degrees' and (xo != 0 and yo != 0) ):
        x_halo = int(wcsc.radec2xy(hdr,xo,yo)[0]);
        y_halo = int(wcsc.radec2xy(hdr,xo,yo)[1]);

    elif ( xo == 0 and yo == 0 ):
        x_halo = int(x_img_size/2);
        y_halo = int(y_img_size/2);
        logging.warning("No central coordinates were given for snapshot. Using image central pixel as the cut center.");
    else:
        logging.error("Central positioning is out of valid values.");
        return (False,False);

    logging.debug("Central point for output image: %s",(x_halo,y_halo));

    # Define the images (in/out) slices to be copied..
    #
    x_ini = x_halo - int(x_cut_size/2) #-1;
    x_fin = x_ini + x_cut_size;
    y_ini = y_halo - int(y_cut_size/2) #-1;
    y_fin = y_ini + y_cut_size;

    x_ini_old = max( 0, x_ini );   x_fin_old = min( x_img_size, x_fin );
    y_ini_old = max( 0, y_ini );   y_fin_old = min( y_img_size, y_fin );

    x_ini_new = abs( min( 0, x_ini ));   x_fin_new = x_cut_size - (x_fin - x_fin_old);
    y_ini_new = abs( min( 0, y_ini ));   y_fin_new = y_cut_size - (y_fin - y_fin_old);

    # If header, update pixel<->sky information..
    #
    if ( hdr ):
        hdr = hf.update_coordinates(hdr.copy(), x_ini, y_ini);
        hdr.update('NAXIS1',x_cut_size);
        hdr.update('NAXIS2',y_cut_size);

    # Initialize new image, and take all index list..
    #
    imagemnova = np.zeros( (y_cut_size,x_cut_size), dtype=imagem.dtype );
    ind_z = np.where(imagemnova == 0);

    # Copy requested image slice..
    #
    imagemnova[ y_ini_new:y_fin_new, x_ini_new:x_fin_new ] = imagem[ y_ini_old:y_fin_old, x_ini_old:x_fin_old ];

    # If 'mask', maintain just "central" object on it..
    #
    if ( mask ):
        msk = ( mask[0]-y_ini, mask[1]-x_ini )

        zip_m = zip( msk[0], msk[1] );
        zip_z = zip( ind_z[0], ind_z[1] );

        L = list(set(zip_z) - set(zip_m));

        try:
            ind_0, ind_1 = zip(*L);
            indx = ( np.array(ind_0), np.array(ind_1) );
            imagemnova[ indx ] = 0;
        except:
            pass;

    return (imagemnova, hdr);