Esempio n. 1
0
def select_objects(segimg, objimg, centroids, header=None):
    """Select objects based on given positions

    Input:
     - segimg  <ndarray> :
       Numpy array with SEGMENTATION image information
     - objimg  <ndarray> :
       Numpy array with OBJECTS/original image information
     - centroids  <list:(int,int)> :
       List of tuples with positions to search for objects [(x0,y0),(x1,y1),...]

    """

    # Initialize object IDs list..
    #
    objIDs = [];
    
    # Is there an identified object on given (xo,yo) point? If yes, store its ID..
    #
    for o_o in centroids:
        xo, yo = o_o;
        objid = segimg[yo,xo];
        if ( objid != 0 ):
            objIDs.append(objid);
        else:
            print >> sys.stdout, "No objects were identified for (x=%s,y=%s) position." % (xo,yo);

    # Read out the objects recognized from images..
    #
    objs, hdrs = imcp.sextamp( segimg, objimg, header, increase=2, relative_increase=True, objIDs=objIDs );

#    image_out, hdr = cutout( obj_img, header=hdr, xo=int(xo), yo=int(yo), x_size=int(x_size), y_size=int(y_size), mask=ind );


    return ({'IDs' : objIDs, 'images' : objs, 'headers' : hdrs});
Esempio n. 2
0
def select_objects(segimg, objimg, centroids, header=None):
    """Select objects based on given positions

    Input:
     - segimg  <ndarray> :
       Numpy array with SEGMENTATION image information
     - objimg  <ndarray> :
       Numpy array with OBJECTS/original image information
     - centroids  <list:(int,int)> :
       List of tuples with positions to search for objects [(x0,y0),(x1,y1),...]

    """

    # Initialize object IDs list..
    #
    objIDs = []

    # Is there an identified object on given (xo,yo) point? If yes, store its ID..
    #
    for o_o in centroids:
        xo, yo = o_o
        objid = segimg[yo, xo]
        if (objid != 0):
            objIDs.append(objid)
        else:
            print >> sys.stdout, "No objects were identified for (x=%s,y=%s) position." % (
                xo, yo)

    # Read out the objects recognized from images..
    #
    objs, hdrs = imcp.sextamp(segimg,
                              objimg,
                              header,
                              increase=2,
                              relative_increase=True,
                              objIDs=objIDs)

    #    image_out, hdr = cutout( obj_img, header=hdr, xo=int(xo), yo=int(yo), x_size=int(x_size), y_size=int(y_size), mask=ind );

    return ({
        'IDs': objIDs,
        'images': objs,
        'headers': hdrs
    })
Esempio n. 3
0
def pickout_obj(fits_image,
                xo,
                yo,
                params=[],
                args={},
                use_header=True,
                increase=0,
                preset=''):
    """
    Function to run SExtractor for objects segmentation and poststamp creation of a given image.
    A reference (e.g, a object centroid) point is expected.
    
    The function receives a FITS image and a pair of coordinates [xo,yo] matching a object.
    The output is the matching object image array, header and ID from segmentation step.
    SExtractor's command-line arguments can be passed through a dictionary [args]
    {
    'key_argument' : 'value_option',
    ...
    }
    , and features to output (See SE's default.param file) at catalog through a list [params].
    
    To have borders around the identified object use [increase] to define the size of them.
    The output image will have "increase" times the extracted object size.
    (Notice that 0 < increase < 1 is possible and will return a poststamp with part of the object)
    
    Preset SE's configuration parameters, for different telescope images, are available. The [preset]
    parameters are chosen to be *good* parameters for those instruments: 'HST','DC4','DC5','CFHT'
    Notice that this preset choices do not disable other parameters.
    
    The flag [use_header]  gives the option to use or not the header instance information.
    
    Input:
     - fits_image  <str> : FITs image filename
     - xo          <int> : X object position in pixels
     - yo          <int> : Y object position in pixels
     - params <list str> : list of parameters to output on sextractor catalogue
     - args        <dic> : dictionary with sextractor command-line arguments
     - use_header <bool> : Whether or not to use (and update) header info
     - increase  <float> : multiplicative factor for poststamp sizing
     - preset      <str> : HST, DC4, DC5, CFHT
    
    Output:
     - <dic> : dictionary structure with the keys 'objIDs', 'images' and 'headers'.
               Each of them is a list with corresponding information.
    
    """

    params.append('NUMBER')

    # Deal with fits files and SExtracting the image..
    out = _file_2_arrays(fits_image, use_header, params, args, preset)

    if not out:
        print >> sys.stderr, "Error: An error occured while running SE and extracting FITS files."
        return (False)

    objimg, segimg, header, cat = out[0], out[1], out[2], out[3]

    # Is there an identified object on given (xo,yo) point?..
    objid = segimg[yo, xo]
    if (objid != 0):
        pass
    else:
        print >> sys.stdout, "No objects were identified on given (line=%s,column=%s) position." % (
            yo, xo)
        return (None)

    ## objects_IDfy return a list of arrays; result from the objIDs objects located in seg image merged with obj image.
    # So, each object in objIDs is returned (also inside a/the list) as array with their corresponding pixels..
    #
    objs, hdrs = imcp.sextamp(segimg,
                              objimg,
                              header,
                              increase=increase,
                              relative_increase=True,
                              objIDs=[objid])
    #objout = objs[0];
    #hdrout = hdrs[0];

    return ({
        'IDs': [objid],
        'images': objs,
        'headers': hdrs
    })
Esempio n. 4
0
def readout_objs(filename,
                 params=[],
                 args={},
                 use_header=True,
                 increase=0,
                 preset=''):
    """
    Function to run SExtractor for objects identification and creates poststamp images.
    
    The function receives a FITS image filename and optionally some other arguments.
    The output are the identified object image arrays, headers and IDs from segmentation step.
    SExtractor's command-line arguments can be passed through a dictionary [args]
    {
    'key_argument' : 'value_option',
    ...
    }
    , and features to output (See SE's default.param file) at catalog through a list [params].
    
    To have borders around the identified object use [increase] to define the size of them.
    The output image will have "increase" times the extracted object size.
    (Notice that 0 < increase < 1 is possible and will return a poststamp with part of the object)
    
    Preset SE's configuration parameters, for different telescope images, are available. The [preset]
    parameters are chosen to be *good* parameters for those instruments: 'HST','DC4','DC5','CFHT'
    Notice that this preset choices do not disable other parameters.
    
    The flag [use_header]  gives the option to use or not the header instance information.
    
    Input:
     - fits_image  <str> : FITs image filename
     - params <list str> : list of parameters to output on sextractor catalogue
     - args        <dic> : dictionary with sextractor command-line arguments
     - use_header <bool> : Whether or not to use (and update) header info
     - increase  <float> : multiplicative factor for poststamp sizing
     - preset      <str> : HST, DC4, DC5, CFHT
    
    Output:
     - <dic> : dictionary structure with the keys 'objIDs', 'images' and 'headers'.
               Each of them is a list with corresponding information.
    
    """

    filename = fits_image

    params.append('NUMBER')

    # Deal with fits files and SExtracting the image..
    out = _file_2_arrays(fits_image, use_header, params, args, preset)

    if not out:
        print >> sys.stderr, "Error: An error occured while running SE and extracting FITS files."
        return (False)

    objimg, segimg, header, cat = out[0], out[1], out[2], out[3]

    # Open "segmentation" output catalog from SE. Notice that object IDs are supposed to lie on 1st column..
    # -
    # ASCII:
    #    try:
    #        objIDs = list( cat[:,0].astype(np.int32) );
    #    except:
    #        objIDs = list( cat.astype(np.int32) );
    # -
    # FITS:
    objIDs = cat.data.field('NUMBER')

    if (len(objIDs) == 0):
        print >> sys.stdout, "No objects were identified on given image."
        return (None)

    ## objects_IDfy return a list of arrays; result from the objIDs objects located in seg image merged with obj image.
    # So, each object in objIDs is returned (also inside a/the list) as array with their corresponding pixels..
    #
    objs, hdrs = imcp.sextamp(segimg,
                              objimg,
                              header,
                              increase=increase,
                              relative_increase=True,
                              objIDs=objIDs)

    return ({
        'IDs': objIDs,
        'images': objs,
        'headers': hdrs
    })
Esempio n. 5
0
def pickout_obj(fits_image, xo, yo, params=[], args={}, use_header=True, increase=0, preset=''):
    """
    Function to run SExtractor for objects segmentation and poststamp creation of a given image.
    A reference (e.g, a object centroid) point is expected.
    
    The function receives a FITS image and a pair of coordinates [xo,yo] matching a object.
    The output is the matching object image array, header and ID from segmentation step.
    SExtractor's command-line arguments can be passed through a dictionary [args]
    {
    'key_argument' : 'value_option',
    ...
    }
    , and features to output (See SE's default.param file) at catalog through a list [params].
    
    To have borders around the identified object use [increase] to define the size of them.
    The output image will have "increase" times the extracted object size.
    (Notice that 0 < increase < 1 is possible and will return a poststamp with part of the object)
    
    Preset SE's configuration parameters, for different telescope images, are available. The [preset]
    parameters are chosen to be *good* parameters for those instruments: 'HST','DC4','DC5','CFHT'
    Notice that this preset choices do not disable other parameters.
    
    The flag [use_header]  gives the option to use or not the header instance information.
    
    Input:
     - fits_image  <str> : FITs image filename
     - xo          <int> : X object position in pixels
     - yo          <int> : Y object position in pixels
     - params <list str> : list of parameters to output on sextractor catalogue
     - args        <dic> : dictionary with sextractor command-line arguments
     - use_header <bool> : Whether or not to use (and update) header info
     - increase  <float> : multiplicative factor for poststamp sizing
     - preset      <str> : HST, DC4, DC5, CFHT
    
    Output:
     - <dic> : dictionary structure with the keys 'objIDs', 'images' and 'headers'.
               Each of them is a list with corresponding information.
    
    """

    params.append('NUMBER');

    # Deal with fits files and SExtracting the image..
    out = _file_2_arrays(fits_image, use_header, params, args, preset);

    if not out:
        print >> sys.stderr, "Error: An error occured while running SE and extracting FITS files.";
        return (False);

    objimg, segimg, header, cat = out[0], out[1], out[2], out[3];


    # Is there an identified object on given (xo,yo) point?..
    objid = segimg[yo,xo];
    if ( objid != 0 ):
        pass;
    else:
        print >> sys.stdout, "No objects were identified on given (line=%s,column=%s) position." % (yo,xo);
        return (None);


    ## objects_IDfy return a list of arrays; result from the objIDs objects located in seg image merged with obj image.
    # So, each object in objIDs is returned (also inside a/the list) as array with their corresponding pixels..
    #
    objs, hdrs = imcp.sextamp( segimg, objimg, header, increase=increase, relative_increase=True, objIDs=[objid] );
    #objout = objs[0];
    #hdrout = hdrs[0];


    return ({'IDs' : [objid], 'images' : objs, 'headers' : hdrs});
Esempio n. 6
0
def readout_objs(filename, params=[], args={}, use_header=True, increase=0, preset=''):
    """
    Function to run SExtractor for objects identification and creates poststamp images.
    
    The function receives a FITS image filename and optionally some other arguments.
    The output are the identified object image arrays, headers and IDs from segmentation step.
    SExtractor's command-line arguments can be passed through a dictionary [args]
    {
    'key_argument' : 'value_option',
    ...
    }
    , and features to output (See SE's default.param file) at catalog through a list [params].
    
    To have borders around the identified object use [increase] to define the size of them.
    The output image will have "increase" times the extracted object size.
    (Notice that 0 < increase < 1 is possible and will return a poststamp with part of the object)
    
    Preset SE's configuration parameters, for different telescope images, are available. The [preset]
    parameters are chosen to be *good* parameters for those instruments: 'HST','DC4','DC5','CFHT'
    Notice that this preset choices do not disable other parameters.
    
    The flag [use_header]  gives the option to use or not the header instance information.
    
    Input:
     - fits_image  <str> : FITs image filename
     - params <list str> : list of parameters to output on sextractor catalogue
     - args        <dic> : dictionary with sextractor command-line arguments
     - use_header <bool> : Whether or not to use (and update) header info
     - increase  <float> : multiplicative factor for poststamp sizing
     - preset      <str> : HST, DC4, DC5, CFHT
    
    Output:
     - <dic> : dictionary structure with the keys 'objIDs', 'images' and 'headers'.
               Each of them is a list with corresponding information.
    
    """

    filename = fits_image;

    params.append('NUMBER');

    # Deal with fits files and SExtracting the image..
    out = _file_2_arrays(fits_image, use_header, params, args, preset);

    if not out:
        print >> sys.stderr, "Error: An error occured while running SE and extracting FITS files.";
        return (False);

    objimg, segimg, header, cat = out[0], out[1], out[2], out[3];

    
    # Open "segmentation" output catalog from SE. Notice that object IDs are supposed to lie on 1st column..
    # -
    # ASCII:
    #    try:
    #        objIDs = list( cat[:,0].astype(np.int32) );
    #    except:
    #        objIDs = list( cat.astype(np.int32) );
    # -
    # FITS:
    objIDs = cat.data.field('NUMBER');

    if ( len(objIDs) == 0 ):
        print >> sys.stdout, "No objects were identified on given image.";
        return (None);


    ## objects_IDfy return a list of arrays; result from the objIDs objects located in seg image merged with obj image.
    # So, each object in objIDs is returned (also inside a/the list) as array with their corresponding pixels..
    #
    objs, hdrs = imcp.sextamp( segimg, objimg, header, increase=increase, relative_increase=True, objIDs=objIDs );


    return ({'IDs' : objIDs, 'images' : objs, 'headers' : hdrs});