Esempio n. 1
0
    def prepare(self, pipeline_elements: list, maximize_metric: bool):
        # build space
        self.space = ConfigurationSpace()

        self.build_smac_space(pipeline_elements)

        self.maximize_metric = maximize_metric

        self.scenario = Scenario({
            "run_obj": self.run_obj,
            "cs": self.cspace,
            "deterministic": "true",
            "wallclock_limit": self.wallclock_limit
        })

        self.smac = SMAC4BO(scenario=self.scenario,
                            rng=np.random.RandomState(42),
                            tae_runner=MyExecuteTARun)

        if self.smac_helper:
            self.smac_helper["data"] = self.smac

        self.optimizer = self.smac.solver
        self.optimizer.runhistory.overwrite_existing_runs = True
        self.ask = self.ask_generator()
Esempio n. 2
0
def evaluate(seed, benchmark, rh2epm, rh2epm_name):
    benchmark_name = benchmark.get_meta_information()['name']

    output_dir = "/home/feurerm/projects/smac3test/%s/%s/%d" % (benchmark_name, rh2epm_name, seed)

    if os.path.exists(output_dir):
        print('Output directory %s exists - skip' % output_dir)
        return

    # Scenario object
    scenario = Scenario({"run_obj": "quality",  # we optimize quality (alternatively runtime)
                         "runcount-limit": 50,
                         # max. number of function evaluations; for this example set to a low number
                         "cs": benchmark.get_configuration_space(),  # configuration space
                         "deterministic": "true",
                         'limit_resources': False,
                         "output_dir": output_dir,
                         })

    import local.treegp

    smac = SMAC4BO(scenario=scenario,
                   rng=seed,
                   tae_runner=benchmark,
                   runhistory2epm=rh2epm,
                   model_type='gp',
                   initial_design=LHDesign,
                   )

    smac.optimize()
Esempio n. 3
0
    def prepare(self, pipeline_elements: list, maximize_metric: bool):

        self.hyperparameter_list = []
        # build space
        self.space = ConfigurationSpace()

        for element in pipeline_elements:
            # check if Switch object

            if isinstance(element, Switch):
                algorithm_options = {
                }  # mapping algorithm name with their child hyper params

                for algo in element.elements:
                    algo_params = []  # hyper params corresponding to "algo"
                    for name, value in algo.hyperparameters.items():
                        smac_param = self._convert_PHOTON_to_smac_space(
                            value,
                            (element.name + "__" +
                             name))  # or element.name__algo.name__name ???
                        algo_params.append(smac_param)
                    algorithm_options[(element.name + "__" +
                                       algo.name)] = algo_params

                algos = CategoricalHyperparameter(
                    name=element.name + "__algos",
                    choices=algorithm_options.keys())
                self.space.add_hyperparameter(algos)
                for algo, params in algorithm_options.items():
                    for param in params:
                        cond = InCondition(child=param,
                                           parent=algos,
                                           values=[algo])
                        self.space.add_hyperparameter(param)
                        self.space.add_condition(cond)

            else:
                for name, value in element.hyperparameters.items():
                    smac_param = self._convert_PHOTON_to_smac_space(
                        value, name)
                    if smac_param is not None:
                        self.space.add_hyperparameter(smac_param)

        self.scenario = Scenario({
            "run_obj": self.run_obj,
            "cutoff_time": self.cutoff_time,
            "runcount_limit": self.runcount_limit,
            "tuner-timeout": self.tuner_timeout,
            "wallclock_limit": self.wallclock_limit,
            "cs": self.space,
            "deterministic": "true"
        })
        self.smac = SMAC4BO(scenario=self.scenario,
                            rng=np.random.RandomState(42))
        self.optimizer = self.smac.solver
        self.optimizer.stats.start_timing()
        self.optimizer.incumbent = self.get_default_incumbent()

        self.flag = False  # False: compute performance of challenger, True: compute performance of incumbent
        self.ask = self.ask_generator()
Esempio n. 4
0
        def test_facade(self):
            config_space = ConfigurationSpace()
            n_components = UniformIntegerHyperparameter(
                "PCA__n_components", 5, 30)
            config_space.add_hyperparameter(n_components)
            scenario_dict = {
                "run_obj": "quality",
                "deterministic": "true",
                "cs": config_space,
                "wallclock_limit": 60
            }

            with self.assertRaises(ValueError):
                SMACOptimizer(facade="SMAC4BOO", scenario_dict=scenario_dict)

            with self.assertRaises(ValueError):
                facade = SMAC4BO(scenario=Scenario(scenario_dict))
                SMACOptimizer(facade=facade, scenario_dict=scenario_dict)

            facades = [
                "SMAC4BO", SMAC4BO, "SMAC4AC", SMAC4AC, "SMAC4HPO", SMAC4HPO,
                "BOHB4HPO", BOHB4HPO
            ]
            for facade in facades:
                SMACOptimizer(facade=facade, scenario_dict=scenario_dict)
Esempio n. 5
0
    def test_exchange_sobol_for_lhd(self):
        cs = ConfigurationSpace()
        for i in range(40):
            cs.add_hyperparameter(
                UniformFloatHyperparameter('x%d' % (i + 1), 0, 1))
        scenario = Scenario({'cs': cs, 'run_obj': 'quality'})
        facade = SMAC4BO(scenario=scenario)
        self.assertIsInstance(facade.solver.initial_design, SobolDesign)
        cs.add_hyperparameter(UniformFloatHyperparameter('x41', 0, 1))

        with self.assertRaisesRegex(
                ValueError,
                'Sobol sequence" can only handle up to 40 dimensions. Please use a different initial design, such as '
                '"the Latin Hypercube design"',
        ):
            SMAC4BO(scenario=scenario)
        self.output_dirs.append(scenario.output_dir)
Esempio n. 6
0
                                               default_value=4)
mutation_prob = UniformFloatHyperparameter("mutation_prob",
                                           0.1,
                                           0.9,
                                           default_value=0.5)
cs.add_hyperparameters(
    [num_generations, number_chromosomes, num_parents_mating, mutation_prob])

# Scenario object
scenario = Scenario({
    "run_obj": "quality",  # we optimize quality (alternatively runtime)
    "runcount-limit":
    10,  # max. number of function evaluations; for this example set to a low number
    "cs": cs,  # configuration space
    "deterministic": "true"
})

# Example call of the function
# It returns: Status, Cost, Runtime, Additional Infos
def_value = gawd(cs.get_default_configuration())

# Optimize, using a SMAC-object
print("Optimizing! Depending on your machine, this might take a few minutes.")
smac = SMAC4BO(
    scenario=scenario,
    rng=np.random.RandomState(42),
    tae_runner=gawd,
)

smac.optimize()
Esempio n. 7
0
    def test_against_smac(self):
        # PHOTON implementation
        self.pipe.add(PipelineElement("StandardScaler"))
        # then do feature selection using a PCA, specify which values to try in the hyperparameter search
        self.pipe += PipelineElement(
            "PCA", hyperparameters={"n_components": IntegerRange(5, 30)}
        )
        # engage and optimize the good old SVM for Classification
        self.pipe += PipelineElement(
            "SVC",
            hyperparameters={
                "kernel": Categorical(["linear", "rbf", "poly", "sigmoid"]),
                "C": FloatRange(0.5, 200),
            },
            gamma="auto",
        )

        self.X, self.y = self.simple_classification()
        self.pipe.fit(self.X, self.y)

        # AUTO ML direct
        # Build Configuration Space which defines all parameters and their ranges
        cs = ConfigurationSpace()

        # We define a few possible types of SVM-kernels and add them as "kernel" to our cs
        n_components = UniformIntegerHyperparameter(
            "PCA__n_components", 5, 30
        )  # , default_value=5)
        cs.add_hyperparameter(n_components)

        kernel = CategoricalHyperparameter(
            "SVC__kernel", ["linear", "rbf", "poly", "sigmoid"]
        )  # , default_value="linear")
        cs.add_hyperparameter(kernel)

        c = UniformFloatHyperparameter("SVC__C", 0.5, 200)  # , default_value=1)
        cs.add_hyperparameter(c)

        # Scenario object
        scenario = Scenario(
            {
                "run_obj": "quality",  # we optimize quality (alternatively runtime)
                "runcount-limit": 800,  # maximum function evaluations
                "cs": cs,  # configuration space
                "deterministic": "true",
                "shared_model": "false",  # !!!!
                "wallclock_limit": self.time_limit,
            }
        )

        # Optimize, using a SMAC-object
        print("Optimizing! Depending on your machine, this might take a few minutes.")
        smac = SMAC4BO(
            scenario=scenario,
            rng=np.random.RandomState(42),
            tae_runner=self.objective_function,
        )

        self.traurig = smac

        incumbent = smac.optimize()

        inc_value = self.objective_function(incumbent)

        print(incumbent)
        print(inc_value)

        runhistory_photon = self.smac_helper["data"].solver.runhistory
        runhistory_original = smac.solver.runhistory

        x_ax = range(
            1,
            min(
                len(runhistory_original.cost_per_config.keys()),
                len(runhistory_photon.cost_per_config.keys()),
            )
            + 1,
        )
        y_ax_original = [runhistory_original.cost_per_config[tmp] for tmp in x_ax]
        y_ax_photon = [runhistory_photon.cost_per_config[tmp] for tmp in x_ax]

        y_ax_original_inc = [min(y_ax_original[: tmp + 1]) for tmp in x_ax]
        y_ax_photon_inc = [min(y_ax_photon[: tmp + 1]) for tmp in x_ax]

        plt.figure(figsize=(10, 7))
        plt.plot(x_ax, y_ax_original, "g", label="Original")
        plt.plot(x_ax, y_ax_photon, "b", label="PHOTON")
        plt.plot(x_ax, y_ax_photon_inc, "r", label="PHOTON Incumbent")
        plt.plot(x_ax, y_ax_original_inc, "k", label="Original Incumbent")
        plt.title("Photon Prove")
        plt.xlabel("X")
        plt.ylabel("Y")
        plt.legend(loc="best")
        plt.show()

        def neighbours(items, fill=None):
            before = itertools.chain([fill], items)
            after = itertools.chain(
                items, [fill]
            )  # You could use itertools.zip_longest() later instead.
            next(after)
            for a, b, c in zip(before, items, after):
                yield [value for value in (a, b, c) if value is not fill]

        print("---------------")
        original_pairing = [
            sum(values) / len(values) for values in neighbours(y_ax_original)
        ]
        bias_term = np.mean(
            [
                abs(y_ax_original_inc[t] - y_ax_photon_inc[t])
                for t in range(len(y_ax_photon_inc))
            ]
        )
        photon_pairing = [
            sum(values) / len(values) - bias_term for values in neighbours(y_ax_photon)
        ]
        counter = 0
        for i, x in enumerate(x_ax):
            if abs(original_pairing[i] - photon_pairing[i]) > 0.05:
                counter += 1
            self.assertLessEqual(counter / len(x_ax), 0.15)
Esempio n. 8
0
# Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace()
x0 = UniformFloatHyperparameter("x0", -5, 10, default_value=-3)
x1 = UniformFloatHyperparameter("x1", -5, 10, default_value=-4)
cs.add_hyperparameters([x0, x1])

# Scenario object
scenario = Scenario({
    "run_obj": "quality",  # we optimize quality (alternatively runtime)
    "runcount-limit":
    10,  # max. number of function evaluations; for this example set to a low number
    "cs": cs,  # configuration space
    "deterministic": "true"
})

# Example call of the function
# It returns: Status, Cost, Runtime, Additional Infos
def_value = rosenbrock_2d(cs.get_default_configuration())
print("Default Value: %.2f" % def_value)

# Optimize, using a SMAC-object
print("Optimizing! Depending on your machine, this might take a few minutes.")
smac = SMAC4BO(
    scenario=scenario,
    rng=np.random.RandomState(42),
    tae_runner=rosenbrock_2d,
)

smac.optimize()
Esempio n. 9
0
    def main_cli(self, commandline_arguments: typing.Optional[typing.List[str]] = None) -> None:
        """Main function of SMAC for CLI interface"""
        self.logger.info("SMAC call: %s" % (" ".join(sys.argv)))

        cmd_reader = CMDReader()
        kwargs = {}
        if commandline_arguments:
            kwargs['commandline_arguments'] = commandline_arguments
        main_args_, smac_args_, scen_args_ = cmd_reader.read_cmd(**kwargs)

        root_logger = logging.getLogger()
        root_logger.setLevel(main_args_.verbose_level)
        logger_handler = logging.StreamHandler(stream=sys.stdout)
        if root_logger.level >= logging.INFO:
            formatter = logging.Formatter(
                "%(levelname)s:\t%(message)s")
        else:
            formatter = logging.Formatter(
                "%(asctime)s:%(levelname)s:%(name)s:\t%(message)s",
                "%Y-%m-%d %H:%M:%S")
        logger_handler.setFormatter(formatter)
        root_logger.addHandler(logger_handler)
        # remove default handler
        if len(root_logger.handlers) > 1:
            root_logger.removeHandler(root_logger.handlers[0])

        # Create defaults
        rh = None
        initial_configs = None
        stats = None
        incumbent = None

        # Create scenario-object
        scenario = {}
        scenario.update(vars(smac_args_))
        scenario.update(vars(scen_args_))
        scen = Scenario(scenario=scenario)

        # Restore state
        if main_args_.restore_state:
            root_logger.debug("Restoring state from %s...", main_args_.restore_state)
            restore_state = main_args_.restore_state
            rh, stats, traj_list_aclib, traj_list_old = self.restore_state(scen, restore_state)

            scen.output_dir_for_this_run = create_output_directory(
                scen, main_args_.seed, root_logger,
            )
            scen.write()
            incumbent = self.restore_state_after_output_dir(scen, stats,
                                                            traj_list_aclib, traj_list_old)

        if main_args_.warmstart_runhistory:
            rh = RunHistory()

            scen, rh = merge_foreign_data_from_file(
                scenario=scen,
                runhistory=rh,
                in_scenario_fn_list=main_args_.warmstart_scenario,
                in_runhistory_fn_list=main_args_.warmstart_runhistory,
                cs=scen.cs,  # type: ignore[attr-defined] # noqa F821
            )

        if main_args_.warmstart_incumbent:
            initial_configs = [scen.cs.get_default_configuration()]  # type: ignore[attr-defined] # noqa F821
            for traj_fn in main_args_.warmstart_incumbent:
                trajectory = TrajLogger.read_traj_aclib_format(
                    fn=traj_fn,
                    cs=scen.cs,  # type: ignore[attr-defined] # noqa F821
                )
                initial_configs.append(trajectory[-1]["incumbent"])

        if main_args_.mode == "SMAC4AC":
            optimizer = SMAC4AC(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed)
        elif main_args_.mode == "SMAC4HPO":
            optimizer = SMAC4HPO(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed)
        elif main_args_.mode == "SMAC4BO":
            optimizer = SMAC4BO(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed)
        elif main_args_.mode == "ROAR":
            optimizer = ROAR(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                run_id=main_args_.seed)
        elif main_args_.mode == "Hydra":
            optimizer = Hydra(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed,
                random_configuration_chooser=main_args_.random_configuration_chooser,
                n_iterations=main_args_.hydra_iterations,
                val_set=main_args_.hydra_validation,
                incs_per_round=main_args_.hydra_incumbents_per_round,
                n_optimizers=main_args_.hydra_n_optimizers)
        elif main_args_.mode == "PSMAC":
            optimizer = PSMAC(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                run_id=main_args_.seed,
                shared_model=smac_args_.shared_model,
                validate=main_args_.psmac_validate,
                n_optimizers=main_args_.hydra_n_optimizers,
                n_incs=main_args_.hydra_incumbents_per_round,
            )
        try:
            optimizer.optimize()
        except (TAEAbortException, FirstRunCrashedException) as err:
            self.logger.error(err)