Esempio n. 1
0
    def main_cli(self):
        '''
            main function of SMAC for CLI interface
        '''

        cmd_reader = CMDReader()
        args_, misc_args = cmd_reader.read_cmd()

        logging.basicConfig(level=args_.verbose_level)

        root_logger = logging.getLogger()
        root_logger.setLevel(args_.verbose_level)

        scen = Scenario(args_.scenario_file, misc_args)

        try:
            smbo = SMBO(scenario=scen, rng=np.random.RandomState(args_.seed))
            smbo.run(max_iters=args_.max_iterations)

        finally:
            smbo.stats.print_stats()
            self.logger.info("Final Incumbent: %s" % (smbo.incumbent))

            smbo.runhistory.save_json(
                fn=os.path.join(scen.output_dir, "runhistory.json"))
Esempio n. 2
0
    def test_get_next_by_local_search(self, patch):
        # Without known incumbent
        class SideEffect(object):
            def __init__(self):
                self.call_number = 0

            def __call__(self, *args, **kwargs):
                rval = 9 - self.call_number
                self.call_number += 1
                return (ConfigurationMock(rval), [[rval]])

        patch.side_effect = SideEffect()
        smbo = SMBO(self.scenario, 1)
        rval = smbo._get_next_by_local_search(num_points=9)
        self.assertEqual(len(rval), 9)
        self.assertEqual(patch.call_count, 9)
        for i in range(9):
            self.assertIsInstance(rval[i][1], ConfigurationMock)
            self.assertEqual(rval[i][1].value, 9 - i)
            self.assertEqual(rval[i][0], 9 - i)
            self.assertEqual(rval[i][1].origin, 'Local Search')

        # With known incumbent
        patch.side_effect = SideEffect()
        smbo.incumbent = 'Incumbent'
        rval = smbo._get_next_by_local_search(num_points=10)
        self.assertEqual(len(rval), 10)
        self.assertEqual(patch.call_count, 19)
        # Only the first local search in each iteration starts from the
        # incumbent
        self.assertEqual(patch.call_args_list[9][0][0], 'Incumbent')
        for i in range(10):
            self.assertEqual(rval[i][1].origin, 'Local Search')
Esempio n. 3
0
    def test_choose_next(self):
        seed = 42
        smbo = SMBO(self.scenario, seed)
        smbo.runhistory = RunHistory()
        X = self.scenario.cs.sample_configuration().get_array()[None, :]

        Y = self.branin(X)
        x = smbo.choose_next(X, Y)[0].get_array()
        assert x.shape == (2, )
Esempio n. 4
0
    def test_get_next_by_random_search(self, patch):
        def side_effect(size):
            return [ConfigurationMock()] * size

        patch.side_effect = side_effect
        smbo = SMBO(self.scenario, 1)
        rval = smbo._get_next_by_random_search(10, False)
        self.assertEqual(len(rval), 10)
        for i in range(10):
            self.assertIsInstance(rval[i][1], ConfigurationMock)
            self.assertEqual(rval[i][1].origin, 'Random Search')
            self.assertEqual(rval[i][0], 0)
Esempio n. 5
0
 def test_init_only_scenario_runtime(self):
     self.scenario.run_obj = 'runtime'
     self.scenario.cutoff = 300
     smbo = SMBO(self.scenario)
     self.assertIsInstance(smbo.model, RandomForestWithInstances)
     np.testing.assert_allclose(smbo.types, smbo.model.types)
     self.assertIsInstance(smbo.rh2EPM, RunHistory2EPM4LogCost)
     self.assertIsInstance(smbo.acquisition_func, EI)
Esempio n. 6
0
 def test_rng(self):
     smbo = SMBO(self.scenario, rng=None)
     self.assertIsInstance(smbo.rng, np.random.RandomState)
     self.assertIsInstance(smbo.num_run, int)
     smbo = SMBO(self.scenario, rng=1)
     rng = np.random.RandomState(1)
     self.assertEqual(smbo.num_run, 1)
     self.assertIsInstance(smbo.rng, np.random.RandomState)
     smbo = SMBO(self.scenario, rng=rng)
     self.assertIsInstance(smbo.num_run, int)
     self.assertIs(smbo.rng, rng)
     # ML: I don't understand the following line and it throws an error
     self.assertRaisesRegexp(
         TypeError, "Unknown type <(class|type) 'str'> for argument "
         'rng. Only accepts None, int or '
         'np.random.RandomState',
         SMBO,
         self.scenario,
         rng='BLA')
Esempio n. 7
0
 def test_eips(self):
     scenario = Scenario({
         'cs': test_helpers.get_branin_config_space(),
         'run_obj': 'quality',
         'deterministic': True
     })
     types = get_types(scenario.cs, None)
     umrfwi = UncorrelatedMultiObjectiveRandomForestWithInstances(
         ['cost', 'runtime'], types)
     eips = EIPS(umrfwi)
     rh2EPM = RunHistory2EPM4EIPS(scenario, 2)
     taf = ExecuteTAFunc(test_function)
     smbo = SMBO(scenario,
                 model=umrfwi,
                 acquisition_function=eips,
                 runhistory2epm=rh2EPM,
                 tae_runner=taf)
     smbo.run(5)
     print(smbo.incumbent)
     raise ValueError()
Esempio n. 8
0
    def test_get_next_by_random_search_sorted(self, patch_sample, patch_ei,
                                              patch_impute):
        values = (10, 1, 9, 2, 8, 3, 7, 4, 6, 5)
        patch_sample.return_value = [ConfigurationMock(i) for i in values]
        patch_ei.return_value = np.array([[_] for _ in values], dtype=float)
        patch_impute.side_effect = lambda x: x
        smbo = SMBO(self.scenario, 1)
        rval = smbo._get_next_by_random_search(10, True)
        self.assertEqual(len(rval), 10)
        for i in range(10):
            self.assertIsInstance(rval[i][1], ConfigurationMock)
            self.assertEqual(rval[i][1].value, 10 - i)
            self.assertEqual(rval[i][0], 10 - i)
            self.assertEqual(rval[i][1].origin, 'Random Search (sorted)')

        # Check that config.get_array works as desired and imputation is used
        #  in between
        np.testing.assert_allclose(
            patch_ei.call_args[0][0],
            np.array(values, dtype=float).reshape((-1, 1)))
Esempio n. 9
0
    def get_tuned_config(self, scenario: ASlibScenario):
        '''
            uses SMAC3 to determine a well-performing configuration in the configuration space self.cs on the given scenario

            Arguments
            ---------
            scenario: ASlibScenario
                ASlib Scenario at hand

            Returns
            -------
            Configuration
                best incumbent configuration found by SMAC
        '''

        taf = ExecuteTAFunc(functools.partial(self.run_cv, scenario=scenario))

        ac_scenario = Scenario({"run_obj": "quality",  # we optimize quality
                                # at most 10 function evaluations
                                "runcount-limit": 10,
                                "cs": self.cs,  # configuration space
                                "deterministic": "true"
                                })

        # necessary to use stats options related to scenario information
        AC_Stats.scenario = ac_scenario

        # Optimize
        self.logger.info(
            ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
        self.logger.info("Start Configuration")
        self.logger.info(
            ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
        smbo = SMBO(scenario=ac_scenario, tae_runner=taf,
                    rng=np.random.RandomState(42))
        smbo.run(max_iters=999)

        AC_Stats.print_stats()
        self.logger.info("Final Incumbent: %s" % (smbo.incumbent))

        return smbo.incumbent
Esempio n. 10
0
    def test_choose_next_2(self):
        def side_effect(X, derivative):
            return np.mean(X, axis=1).reshape((-1, 1))

        smbo = SMBO(self.scenario, 1)
        smbo.runhistory = RunHistory()
        smbo.model = mock.MagicMock()
        smbo.acquisition_func._compute = mock.MagicMock()
        smbo.acquisition_func._compute.side_effect = side_effect
        # local search would call the underlying local search maximizer,
        # which would have to be mocked out. Replacing the method by random
        # search is way easier!
        smbo._get_next_by_local_search = smbo._get_next_by_random_search

        X = smbo.rng.rand(10, 2)
        Y = smbo.rng.rand(10, 1)

        x = smbo.choose_next(X, Y)

        self.assertEqual(smbo.model.train.call_count, 1)
        self.assertEqual(smbo.acquisition_func._compute.call_count, 1)
        self.assertEqual(len(x), 2020)
        num_random_search = 0
        for i in range(0, 2020, 2):
            self.assertIsInstance(x[i], Configuration)
            if x[i].origin == 'Random Search':
                num_random_search += 1
        # Since we replace local search with random search, we have to count
        # the occurences of random seacrh instead
        self.assertEqual(num_random_search, 10)
        for i in range(1, 2020, 2):
            self.assertIsInstance(x[i], Configuration)
            self.assertEqual(x[i].origin, 'Random Search')
Esempio n. 11
0
 def test_init_EIPS_as_arguments(self):
     for objective in ['runtime', 'quality']:
         self.scenario.run_obj = objective
         types = get_types(self.scenario.cs, None)
         umrfwi = UncorrelatedMultiObjectiveRandomForestWithInstances(
             ['cost', 'runtime'], types)
         eips = EIPS(umrfwi)
         rh2EPM = RunHistory2EPM4EIPS(self.scenario, 2)
         smbo = SMBO(self.scenario,
                     model=umrfwi,
                     acquisition_function=eips,
                     runhistory2epm=rh2EPM)
         self.assertIs(umrfwi, smbo.model)
         self.assertIs(eips, smbo.acquisition_func)
         self.assertIs(rh2EPM, smbo.rh2EPM)
Esempio n. 12
0
    def run_smbo(self, max_iters=1000):
        global evaluator

        # == first things first: load the datamanager
        self.reset_data_manager()

        # == Initialize SMBO stuff
        # first create a scenario
        seed = self.seed  # TODO
        num_params = len(self.config_space.get_hyperparameters())
        # allocate a run history
        run_history = RunHistory()
        meta_runhistory = RunHistory()
        meta_runs_dataset_indices = {}
        num_run = self.start_num_run
        instance_id = self.dataset_name + SENTINEL

        # == Train on subset
        #    before doing anything, let us run the default_cfg
        #    on a subset of the available data to ensure that
        #    we at least have some models
        #    we will try three different ratios of decreasing magnitude
        #    in the hope that at least on the last one we will be able
        #    to get a model
        n_data = self.datamanager.data['X_train'].shape[0]
        subset_ratio = 10000. / n_data
        if subset_ratio >= 0.5:
            subset_ratio = 0.33
            subset_ratios = [subset_ratio, subset_ratio * 0.10]
        else:
            subset_ratios = [subset_ratio, 500. / n_data]
        self.logger.info("Training default configurations on a subset of "
                         "%d/%d data points." %
                         (int(n_data * subset_ratio), n_data))

        # the time limit for these function evaluations is rigorously
        # set to only 1/2 of a full function evaluation
        subset_time_limit = max(5, int(self.func_eval_time_limit / 2))
        # the configs we want to run on the data subset are:
        # 1) the default configs
        # 2) a set of configs we selected for training on a subset
        subset_configs = [self.config_space.get_default_configuration()] \
                          + self.collect_additional_subset_defaults()
        subset_config_succesful = [False] * len(subset_configs)
        for subset_config_id, next_config in enumerate(subset_configs):
            for i, ratio in enumerate(subset_ratios):
                self.reset_data_manager()
                n_data_subsample = int(n_data * ratio)

                # run the config, but throw away the result afterwards
                # since this cfg was evaluated only on a subset
                # and we don't want  to confuse SMAC
                self.logger.info(
                    "Starting to evaluate %d on SUBSET "
                    "with size %d and time limit %ds.", num_run,
                    n_data_subsample, subset_time_limit)
                self.logger.info(next_config)
                _info = eval_with_limits(self.datamanager, self.tmp_dir,
                                         next_config, seed, num_run,
                                         self.resampling_strategy,
                                         self.resampling_strategy_args,
                                         self.memory_limit, subset_time_limit,
                                         n_data_subsample)
                (duration, result, _, additional_run_info, status) = _info
                self.logger.info(
                    "Finished evaluating %d. configuration on SUBSET. "
                    "Duration %f; loss %f; status %s; additional run "
                    "info: %s ", num_run, duration, result, str(status),
                    additional_run_info)

                num_run += 1
                if i < len(subset_ratios) - 1:
                    if status != StatusType.SUCCESS:
                        # Do not increase num_run here, because we will try
                        # the same configuration with less data
                        self.logger.info(
                            "A CONFIG did not finish "
                            " for subset ratio %f -> going smaller", ratio)
                        continue
                    else:
                        self.logger.info(
                            "Finished SUBSET training sucessfully "
                            "with ratio %f", ratio)
                        subset_config_succesful[subset_config_id] = True
                        break
                else:
                    if status != StatusType.SUCCESS:
                        self.logger.info(
                            "A CONFIG did not finish "
                            " for subset ratio %f.", ratio)
                        continue
                    else:
                        self.logger.info(
                            "Finished SUBSET training sucessfully "
                            "with ratio %f", ratio)
                        subset_config_succesful[subset_config_id] = True
                        break

        # Use the first non-failing configuration from the subsets as the new
        #  default configuration -> this guards us against the random forest
        # failing on large, sparse datasets
        default_cfg = None
        for subset_config_id, next_config in enumerate(subset_configs):
            if subset_config_succesful[subset_config_id]:
                default_cfg = next_config
                break
        if default_cfg is None:
            default_cfg = self.config_space.get_default_configuration()

        # == METALEARNING suggestions
        # we start by evaluating the defaults on the full dataset again
        # and add the suggestions from metalearning behind it

        if self.metadata_directory is None:
            metalearning_directory = os.path.dirname(
                autosklearn.metalearning.__file__)
            # There is no multilabel data in OpenML
            if self.task == MULTILABEL_CLASSIFICATION:
                meta_task = BINARY_CLASSIFICATION
            else:
                meta_task = self.task
            metadata_directory = os.path.join(
                metalearning_directory, 'files', '%s_%s_%s' %
                (METRIC_TO_STRING[self.metric],
                 TASK_TYPES_TO_STRING[meta_task],
                 'sparse' if self.datamanager.info['is_sparse'] else 'dense'))
            self.metadata_directory = metadata_directory

        self.logger.info('Metadata directory: %s', self.metadata_directory)
        meta_base = MetaBase(self.config_space, self.metadata_directory)

        metafeature_calculation_time_limit = int(self.total_walltime_limit / 4)
        metafeature_calculation_start_time = time.time()
        meta_features = self._calculate_metafeatures_with_limits(
            metafeature_calculation_time_limit)
        metafeature_calculation_end_time = time.time()
        metafeature_calculation_time_limit = \
            metafeature_calculation_time_limit - (
            metafeature_calculation_end_time -
            metafeature_calculation_start_time)

        if metafeature_calculation_time_limit < 1:
            self.logger.warning(
                'Time limit for metafeature calculation less '
                'than 1 seconds (%f). Skipping calculation '
                'of metafeatures for encoded dataset.',
                metafeature_calculation_time_limit)
            meta_features_encoded = None
        else:
            self.datamanager.perform1HotEncoding()
            meta_features_encoded = \
                self._calculate_metafeatures_encoded_with_limits(
                    metafeature_calculation_time_limit)

        # In case there is a problem calculating the encoded meta-features
        if meta_features is None:
            if meta_features_encoded is not None:
                meta_features = meta_features_encoded
        else:
            if meta_features_encoded is not None:
                meta_features.metafeature_values.update(
                    meta_features_encoded.metafeature_values)

        if meta_features is not None:
            meta_base.add_dataset(instance_id, meta_features)
            # Do mean imputation of the meta-features - should be done specific
            # for each prediction model!
            all_metafeatures = meta_base.get_metafeatures(
                features=list(meta_features.keys()))
            all_metafeatures.fillna(all_metafeatures.mean(), inplace=True)

            metalearning_configurations = self.collect_metalearning_suggestions(
                meta_base)
            if metalearning_configurations is None:
                metalearning_configurations = []
            self.reset_data_manager()

            self.logger.info('%s', meta_features)

            # Convert meta-features into a dictionary because the scenario
            # expects a dictionary
            meta_features_dict = {}
            for dataset, series in all_metafeatures.iterrows():
                meta_features_dict[dataset] = series.values
            meta_features_list = []
            for meta_feature_name in all_metafeatures.columns:
                meta_features_list.append(
                    meta_features[meta_feature_name].value)
            meta_features_list = np.array(meta_features_list).reshape((1, -1))
            self.logger.info(list(meta_features_dict.keys()))

            meta_runs = meta_base.get_all_runs(METRIC_TO_STRING[self.metric])
            meta_runs_index = 0
            try:
                meta_durations = meta_base.get_all_runs('runtime')
                read_runtime_data = True
            except KeyError:
                read_runtime_data = False
                self.logger.critical('Cannot read runtime data.')
                if self.acquisition_function == 'EIPS':
                    self.logger.critical(
                        'Reverting to acquisition function EI!')
                    self.acquisition_function = 'EI'

            for meta_dataset in meta_runs.index:
                meta_dataset_start_index = meta_runs_index
                for meta_configuration in meta_runs.columns:
                    if np.isfinite(meta_runs.loc[meta_dataset,
                                                 meta_configuration]):
                        try:
                            config = meta_base.get_configuration_from_algorithm_index(
                                meta_configuration)
                            cost = meta_runs.loc[meta_dataset,
                                                 meta_configuration]
                            if read_runtime_data:
                                runtime = meta_durations.loc[
                                    meta_dataset, meta_configuration]
                            else:
                                runtime = 1
                            # TODO read out other status types!
                            meta_runhistory.add(config,
                                                cost,
                                                runtime,
                                                StatusType.SUCCESS,
                                                instance_id=meta_dataset)
                            meta_runs_index += 1
                        except:
                            # TODO maybe add warning
                            pass

                meta_runs_dataset_indices[meta_dataset] = (
                    meta_dataset_start_index, meta_runs_index)
        else:
            if self.acquisition_function == 'EIPS':
                self.logger.critical('Reverting to acquisition function EI!')
                self.acquisition_function = 'EI'
            meta_features_list = []
            meta_features_dict = {}
            metalearning_configurations = []

        self.scenario = AutoMLScenario(self.config_space,
                                       self.total_walltime_limit,
                                       self.func_eval_time_limit,
                                       meta_features_dict, self.tmp_dir,
                                       self.shared_mode)

        types = get_types(self.config_space, self.scenario.feature_array)
        if self.acquisition_function == 'EI':
            rh2EPM = RunHistory2EPM4Cost(num_params=num_params,
                                         scenario=self.scenario,
                                         success_states=None,
                                         impute_censored_data=False,
                                         impute_state=None)
            model = RandomForestWithInstances(
                types,
                instance_features=meta_features_list,
                seed=1,
                num_trees=10)
            smac = SMBO(self.scenario, model=model, rng=seed)
        elif self.acquisition_function == 'EIPS':
            rh2EPM = RunHistory2EPM4EIPS(num_params=num_params,
                                         scenario=self.scenario,
                                         success_states=None,
                                         impute_censored_data=False,
                                         impute_state=None)
            model = UncorrelatedMultiObjectiveRandomForestWithInstances(
                ['cost', 'runtime'],
                types,
                num_trees=10,
                instance_features=meta_features_list,
                seed=1)
            acquisition_function = EIPS(model)
            smac = SMBO(self.scenario,
                        acquisition_function=acquisition_function,
                        model=model,
                        runhistory2epm=rh2EPM,
                        rng=seed)
        else:
            raise ValueError('Unknown acquisition function value %s!' %
                             self.acquisition_function)

        # Build a runtime model
        # runtime_rf = RandomForestWithInstances(types,
        #                                        instance_features=meta_features_list,
        #                                        seed=1, num_trees=10)
        # runtime_rh2EPM = RunHistory2EPM4EIPS(num_params=num_params,
        #                                      scenario=self.scenario,
        #                                      success_states=None,
        #                                      impute_censored_data=False,
        #                                      impute_state=None)
        # X_runtime, y_runtime = runtime_rh2EPM.transform(meta_runhistory)
        # runtime_rf.train(X_runtime, y_runtime[:, 1].flatten())
        X_meta, Y_meta = rh2EPM.transform(meta_runhistory)
        # Transform Y_meta on a per-dataset base
        for meta_dataset in meta_runs_dataset_indices:
            start_index, end_index = meta_runs_dataset_indices[meta_dataset]
            end_index += 1  # Python indexing
            Y_meta[start_index:end_index, 0]\
                [Y_meta[start_index:end_index, 0] >2.0] =  2.0
            dataset_minimum = np.min(Y_meta[start_index:end_index, 0])
            Y_meta[start_index:end_index,
                   0] = 1 - ((1. - Y_meta[start_index:end_index, 0]) /
                             (1. - dataset_minimum))
            Y_meta[start_index:end_index, 0]\
                  [Y_meta[start_index:end_index, 0] > 2] = 2

        # == first, evaluate all metelearning and default configurations
        for i, next_config in enumerate(
            ([default_cfg] + metalearning_configurations)):
            # Do not evaluate default configurations more than once
            if i >= len([default_cfg]) and next_config in [default_cfg]:
                continue

            config_name = 'meta-learning' if i >= len([default_cfg]) \
                else 'default'

            self.logger.info(
                "Starting to evaluate %d. configuration "
                "(%s configuration) with time limit %ds.", num_run,
                config_name, self.func_eval_time_limit)
            self.logger.info(next_config)
            self.reset_data_manager()
            info = eval_with_limits(self.datamanager, self.tmp_dir,
                                    next_config, seed, num_run,
                                    self.resampling_strategy,
                                    self.resampling_strategy_args,
                                    self.memory_limit,
                                    self.func_eval_time_limit)
            (duration, result, _, additional_run_info, status) = info
            run_history.add(config=next_config,
                            cost=result,
                            time=duration,
                            status=status,
                            instance_id=instance_id,
                            seed=seed)
            run_history.update_cost(next_config, result)
            self.logger.info(
                "Finished evaluating %d. configuration. "
                "Duration %f; loss %f; status %s; additional run "
                "info: %s ", num_run, duration, result, str(status),
                additional_run_info)
            num_run += 1
            if smac.incumbent is None:
                smac.incumbent = next_config
            elif result < run_history.get_cost(smac.incumbent):
                smac.incumbent = next_config

            if self.scenario.shared_model:
                pSMAC.write(run_history=run_history,
                            output_directory=self.scenario.output_dir,
                            num_run=self.seed)

        # == after metalearning run SMAC loop
        smac.runhistory = run_history
        smac_iter = 0
        finished = False
        while not finished:
            if self.scenario.shared_model:
                pSMAC.read(run_history=run_history,
                           output_directory=self.scenario.output_dir,
                           configuration_space=self.config_space,
                           logger=self.logger)

            next_configs = []
            time_for_choose_next = -1
            try:
                X_cfg, Y_cfg = rh2EPM.transform(run_history)

                if not run_history.empty():
                    # Update costs by normalization
                    dataset_minimum = np.min(Y_cfg[:, 0])
                    Y_cfg[:, 0] = 1 - ((1. - Y_cfg[:, 0]) /
                                       (1. - dataset_minimum))
                    Y_cfg[:, 0][Y_cfg[:, 0] > 2] = 2

                if len(X_meta) > 0 and len(X_cfg) > 0:
                    pass
                    #X_cfg = np.concatenate((X_meta, X_cfg))
                    #Y_cfg = np.concatenate((Y_meta, Y_cfg))
                elif len(X_meta) > 0:
                    X_cfg = X_meta.copy()
                    Y_cfg = Y_meta.copy()
                elif len(X_cfg) > 0:
                    X_cfg = X_cfg.copy()
                    Y_cfg = Y_cfg.copy()
                else:
                    raise ValueError(
                        'No training data for SMAC random forest!')

                self.logger.info('Using %d training points for SMAC.' %
                                 X_cfg.shape[0])
                choose_next_start_time = time.time()
                next_configs_tmp = smac.choose_next(
                    X_cfg,
                    Y_cfg,
                    num_interleaved_random=110,
                    num_configurations_by_local_search=10,
                    num_configurations_by_random_search_sorted=100)
                time_for_choose_next = time.time() - choose_next_start_time
                self.logger.info('Used %g seconds to find next '
                                 'configurations' % (time_for_choose_next))
                next_configs.extend(next_configs_tmp)
            # TODO put Exception here!
            except Exception as e:
                self.logger.error(e)
                self.logger.error("Error in getting next configurations "
                                  "with SMAC. Using random configuration!")
                next_config = self.config_space.sample_configuration()
                next_configs.append(next_config)

            models_fitted_this_iteration = 0
            start_time_this_iteration = time.time()
            for next_config in next_configs:
                x_runtime = impute_inactive_values(next_config)
                x_runtime = impute_inactive_values(x_runtime).get_array()
                # predicted_runtime = runtime_rf.predict_marginalized_over_instances(
                #     x_runtime.reshape((1, -1)))
                # predicted_runtime = np.exp(predicted_runtime[0][0][0]) - 1

                self.logger.info(
                    "Starting to evaluate %d. configuration (from "
                    "SMAC) with time limit %ds.", num_run,
                    self.func_eval_time_limit)
                self.logger.info(next_config)
                self.reset_data_manager()
                info = eval_with_limits(self.datamanager, self.tmp_dir,
                                        next_config, seed, num_run,
                                        self.resampling_strategy,
                                        self.resampling_strategy_args,
                                        self.memory_limit,
                                        self.func_eval_time_limit)
                (duration, result, _, additional_run_info, status) = info
                run_history.add(config=next_config,
                                cost=result,
                                time=duration,
                                status=status,
                                instance_id=instance_id,
                                seed=seed)
                run_history.update_cost(next_config, result)

                #self.logger.info('Predicted runtime %g, true runtime %g',
                #                 predicted_runtime, duration)

                # TODO add unittest to make sure everything works fine and
                # this does not get outdated!
                if smac.incumbent is None:
                    smac.incumbent = next_config
                elif result < run_history.get_cost(smac.incumbent):
                    smac.incumbent = next_config

                self.logger.info(
                    "Finished evaluating %d. configuration. "
                    "Duration: %f; loss: %f; status %s; additional "
                    "run info: %s ", num_run, duration, result, str(status),
                    additional_run_info)
                smac_iter += 1
                num_run += 1

                models_fitted_this_iteration += 1
                time_used_this_iteration = time.time(
                ) - start_time_this_iteration
                if models_fitted_this_iteration >= 2 and \
                        time_for_choose_next > 0 and \
                        time_used_this_iteration > time_for_choose_next:
                    break
                elif time_for_choose_next <= 0 and \
                        models_fitted_this_iteration >= 1:
                    break
                elif models_fitted_this_iteration >= 50:
                    break

                if max_iters is not None:
                    finished = (smac_iter < max_iters)

            if self.scenario.shared_model:
                pSMAC.write(run_history=run_history,
                            output_directory=self.scenario.output_dir,
                            num_run=self.seed)
Esempio n. 13
0
    "run_obj": "quality",  # we optimize quality (alternative runtime)
    "runcount-limit": 200,  # at most 200 function evaluations
    "cs": cs,  # configuration space
    "deterministic": "true",
    #"tuner-timeout" : 1,
    #"wallclock_limit": 2
})
stats = Stats(scenario)

# register function to be optimize
taf = ExecuteTAFunc(rosenbrock_4d, stats)

# example call of the function
# it returns: Status, Cost, Runtime, Additional Infos
def_value = taf.run(cs.get_default_configuration())[1]
print("Default Value: %.2f" % (def_value))

# Optimize
smbo = SMBO(scenario=scenario,
            tae_runner=taf,
            stats=stats,
            rng=np.random.RandomState(42))
try:
    smbo.run(max_iters=999)
finally:
    smbo.stats.print_stats()
print("Final Incumbent: %s" % (smbo.incumbent))

inc_value = taf.run(smbo.incumbent)[1]
print("Optimized Value: %.2f" % (inc_value))
Esempio n. 14
0
    def __init__(
            self,
            scenario: Scenario,
            # TODO: once we drop python3.4 add type hint
            # typing.Union[ExecuteTARun, callable]
            tae_runner=None,
            runhistory: RunHistory = None,
            intensifier: Intensifier = None,
            acquisition_function: AbstractAcquisitionFunction = None,
            model: AbstractEPM = None,
            runhistory2epm: AbstractRunHistory2EPM = None,
            initial_design: InitialDesign = None,
            initial_configurations: typing.List[Configuration] = None,
            stats: Stats = None,
            rng: np.random.RandomState = None):
        '''
        Facade to use SMAC default mode

        Parameters
        ----------
        scenario: smac.scenario.scenario.Scenario
            Scenario object
        tae_runner: ExecuteTARun or callable
            Callable or implementation of :class:`ExecuteTaRun`. In case a
            callable is passed it will be wrapped by tae.ExecuteTaFunc().
            If not set, tae_runner will be initialized with
            the tae.ExecuteTARunOld()
        runhistory: RunHistory
            runhistory to store all algorithm runs
        intensifier: Intensifier
            intensification object to issue a racing to decide the current
            incumbent
        acquisition_function : AcquisitionFunction
            Object that implements the AbstractAcquisitionFunction. Will use
            EI if not set.
        model : AbstractEPM
            Model that implements train() and predict(). Will use a
            RandomForest if not set.
        runhistory2epm : RunHistory2EMP
            Object that implements the AbstractRunHistory2EPM. If None,
            will use RunHistory2EPM4Cost if objective is cost or
            RunHistory2EPM4LogCost if objective is runtime.
        initial_design: InitialDesign
            initial sampling design
        initial_configurations: typing.List[Configuration]
            list of initial configurations for initial design -- 
            cannot be used together with initial_design
        stats: Stats
            optional stats object
        rng: np.random.RandomState
            Random number generator
        '''
        self.logger = logging.getLogger("SMAC")

        aggregate_func = average_cost

        # initialize stats object
        if stats:
            self.stats = stats
        else:
            self.stats = Stats(scenario)

        # initialize empty runhistory
        if runhistory is None:
            runhistory = RunHistory(aggregate_func=aggregate_func)

        # initial random number generator
        num_run, rng = self._get_rng(rng=rng)

        # reset random number generator in config space to draw different
        # random configurations with each seed given to SMAC
        scenario.cs.seed(rng.randint(MAXINT))

        # initial Trajectory Logger
        traj_logger = TrajLogger(output_dir=scenario.output_dir,
                                 stats=self.stats)

        # initial EPM
        types = get_types(scenario.cs, scenario.feature_array)
        if model is None:
            model = RandomForestWithInstances(
                types=types,
                instance_features=scenario.feature_array,
                seed=rng.randint(MAXINT))
        # initial acquisition function
        if acquisition_function is None:
            acquisition_function = EI(model=model)

        # initialize optimizer on acquisition function
        local_search = LocalSearch(acquisition_function, scenario.cs)

        # initialize tae_runner
        # First case, if tae_runner is None, the target algorithm is a call
        # string in the scenario file
        if tae_runner is None:
            tae_runner = ExecuteTARunOld(ta=scenario.ta,
                                         stats=self.stats,
                                         run_obj=scenario.run_obj,
                                         runhistory=runhistory,
                                         par_factor=scenario.par_factor)
        # Second case, the tae_runner is a function to be optimized
        elif callable(tae_runner):
            tae_runner = ExecuteTAFuncDict(ta=tae_runner,
                                           stats=self.stats,
                                           run_obj=scenario.run_obj,
                                           memory_limit=scenario.memory_limit,
                                           runhistory=runhistory,
                                           par_factor=scenario.par_factor)
        # Third case, if it is an ExecuteTaRun we can simply use the
        # instance. Otherwise, the next check raises an exception
        elif not isinstance(tae_runner, ExecuteTARun):
            raise TypeError("Argument 'tae_runner' is %s, but must be "
                            "either a callable or an instance of "
                            "ExecuteTaRun. Passing 'None' will result in the "
                            "creation of target algorithm runner based on the "
                            "call string in the scenario file." %
                            type(tae_runner))

        # Check that overall objective and tae objective are the same
        if tae_runner.run_obj != scenario.run_obj:
            raise ValueError("Objective for the target algorithm runner and "
                             "the scenario must be the same, but are '%s' and "
                             "'%s'" % (tae_runner.run_obj, scenario.run_obj))

        # inject stats if necessary
        if tae_runner.stats is None:
            tae_runner.stats = self.stats
        # inject runhistory if necessary
        if tae_runner.runhistory is None:
            tae_runner.runhistory = runhistory

        # initial intensification
        if intensifier is None:
            intensifier = Intensifier(
                tae_runner=tae_runner,
                stats=self.stats,
                traj_logger=traj_logger,
                rng=rng,
                instances=scenario.train_insts,
                cutoff=scenario.cutoff,
                deterministic=scenario.deterministic,
                run_obj_time=scenario.run_obj == "runtime",
                instance_specifics=scenario.instance_specific,
                minR=scenario.minR,
                maxR=scenario.maxR)

        # initial design
        if initial_design is not None and initial_configurations is not None:
            raise ValueError(
                "Either use initial_design or initial_configurations; but not both"
            )

        if initial_configurations is not None:
            initial_design = MultiConfigInitialDesign(
                tae_runner=tae_runner,
                scenario=scenario,
                stats=self.stats,
                traj_logger=traj_logger,
                runhistory=runhistory,
                rng=rng,
                configs=initial_configurations,
                intensifier=intensifier,
                aggregate_func=aggregate_func)
        elif initial_design is None:
            if scenario.initial_incumbent == "DEFAULT":
                initial_design = DefaultConfiguration(tae_runner=tae_runner,
                                                      scenario=scenario,
                                                      stats=self.stats,
                                                      traj_logger=traj_logger,
                                                      rng=rng)
            elif scenario.initial_incumbent == "RANDOM":
                initial_design = RandomConfiguration(tae_runner=tae_runner,
                                                     scenario=scenario,
                                                     stats=self.stats,
                                                     traj_logger=traj_logger,
                                                     rng=rng)
            else:
                raise ValueError("Don't know what kind of initial_incumbent "
                                 "'%s' is" % scenario.initial_incumbent)

        # initial conversion of runhistory into EPM data
        if runhistory2epm is None:

            num_params = len(scenario.cs.get_hyperparameters())
            if scenario.run_obj == "runtime":

                # if we log the performance data,
                # the RFRImputator will already get
                # log transform data from the runhistory
                cutoff = np.log10(scenario.cutoff)
                threshold = np.log10(scenario.cutoff * scenario.par_factor)

                imputor = RFRImputator(rs=rng,
                                       cutoff=cutoff,
                                       threshold=threshold,
                                       model=model,
                                       change_threshold=0.01,
                                       max_iter=2)

                runhistory2epm = RunHistory2EPM4LogCost(
                    scenario=scenario,
                    num_params=num_params,
                    success_states=[
                        StatusType.SUCCESS,
                    ],
                    impute_censored_data=True,
                    impute_state=[
                        StatusType.TIMEOUT,
                    ],
                    imputor=imputor)

            elif scenario.run_obj == 'quality':
                runhistory2epm = RunHistory2EPM4Cost\
                    (scenario=scenario, num_params=num_params,
                     success_states=[StatusType.SUCCESS, ],
                     impute_censored_data=False, impute_state=None)

            else:
                raise ValueError('Unknown run objective: %s. Should be either '
                                 'quality or runtime.' % self.scenario.run_obj)

        self.solver = SMBO(scenario=scenario,
                           stats=self.stats,
                           initial_design=initial_design,
                           runhistory=runhistory,
                           runhistory2epm=runhistory2epm,
                           intensifier=intensifier,
                           aggregate_func=aggregate_func,
                           num_run=num_run,
                           model=model,
                           acq_optimizer=local_search,
                           acquisition_func=acquisition_function,
                           rng=rng)
Esempio n. 15
0
    def run_smbo(self, max_iters=1000):
        global evaluator

        # == first things first: load the datamanager
        self.reset_data_manager()
        
        # == Initialize SMBO stuff
        # first create a scenario
        seed = self.seed # TODO
        num_params = len(self.config_space.get_hyperparameters())
        # allocate a run history
        run_history = RunHistory()
        meta_runhistory = RunHistory()
        meta_runs_dataset_indices = {}
        num_run = self.start_num_run
        instance_id = self.dataset_name + SENTINEL

        # == Train on subset
        #    before doing anything, let us run the default_cfg
        #    on a subset of the available data to ensure that
        #    we at least have some models
        #    we will try three different ratios of decreasing magnitude
        #    in the hope that at least on the last one we will be able
        #    to get a model
        n_data = self.datamanager.data['X_train'].shape[0]
        subset_ratio = 10000. / n_data
        if subset_ratio >= 0.5:
            subset_ratio = 0.33
            subset_ratios = [subset_ratio, subset_ratio * 0.10]
        else:
            subset_ratios = [subset_ratio, 500. / n_data]
        self.logger.info("Training default configurations on a subset of "
                         "%d/%d data points." %
                         (int(n_data * subset_ratio), n_data))

        # the time limit for these function evaluations is rigorously
        # set to only 1/2 of a full function evaluation
        subset_time_limit = max(5, int(self.func_eval_time_limit / 2))
        # the configs we want to run on the data subset are:
        # 1) the default configs
        # 2) a set of configs we selected for training on a subset
        subset_configs = [self.config_space.get_default_configuration()] \
                          + self.collect_additional_subset_defaults()
        subset_config_succesful = [False] * len(subset_configs)
        for subset_config_id, next_config in enumerate(subset_configs):
            for i, ratio in enumerate(subset_ratios):
                self.reset_data_manager()
                n_data_subsample = int(n_data * ratio)

                # run the config, but throw away the result afterwards
                # since this cfg was evaluated only on a subset
                # and we don't want  to confuse SMAC
                self.logger.info("Starting to evaluate %d on SUBSET "
                                 "with size %d and time limit %ds.",
                                 num_run, n_data_subsample,
                                 subset_time_limit)
                self.logger.info(next_config)
                _info = eval_with_limits(
                    self.datamanager, self.tmp_dir, next_config,
                    seed, num_run,
                    self.resampling_strategy,
                    self.resampling_strategy_args,
                    self.memory_limit,
                    subset_time_limit, n_data_subsample)
                (duration, result, _, additional_run_info, status) = _info
                self.logger.info("Finished evaluating %d. configuration on SUBSET. "
                                 "Duration %f; loss %f; status %s; additional run "
                                 "info: %s ", num_run, duration, result,
                                 str(status), additional_run_info)

                num_run += 1
                if i < len(subset_ratios) - 1:
                    if status != StatusType.SUCCESS:
                        # Do not increase num_run here, because we will try
                        # the same configuration with less data
                        self.logger.info("A CONFIG did not finish "
                                         " for subset ratio %f -> going smaller",
                                         ratio)
                        continue
                    else:
                        self.logger.info("Finished SUBSET training sucessfully "
                                         "with ratio %f", ratio)
                        subset_config_succesful[subset_config_id] = True
                        break
                else:
                    if status != StatusType.SUCCESS:
                        self.logger.info("A CONFIG did not finish "
                                         " for subset ratio %f.",
                                         ratio)
                        continue
                    else:
                        self.logger.info("Finished SUBSET training sucessfully "
                                         "with ratio %f", ratio)
                        subset_config_succesful[subset_config_id] = True
                        break

        # Use the first non-failing configuration from the subsets as the new
        #  default configuration -> this guards us against the random forest
        # failing on large, sparse datasets
        default_cfg = None
        for subset_config_id, next_config in enumerate(subset_configs):
            if subset_config_succesful[subset_config_id]:
                default_cfg = next_config
                break
        if default_cfg is None:
            default_cfg = self.config_space.get_default_configuration()

        # == METALEARNING suggestions
        # we start by evaluating the defaults on the full dataset again
        # and add the suggestions from metalearning behind it

        if self.metadata_directory is None:
            metalearning_directory = os.path.dirname(
                autosklearn.metalearning.__file__)
            # There is no multilabel data in OpenML
            if self.task == MULTILABEL_CLASSIFICATION:
                meta_task = BINARY_CLASSIFICATION
            else:
                meta_task = self.task
            metadata_directory = os.path.join(
                metalearning_directory, 'files',
                '%s_%s_%s' % (METRIC_TO_STRING[self.metric],
                              TASK_TYPES_TO_STRING[meta_task],
                              'sparse' if self.datamanager.info['is_sparse']
                              else 'dense'))
            self.metadata_directory = metadata_directory

        self.logger.info('Metadata directory: %s', self.metadata_directory)
        meta_base = MetaBase(self.config_space, self.metadata_directory)

        metafeature_calculation_time_limit = int(
            self.total_walltime_limit / 4)
        metafeature_calculation_start_time = time.time()
        meta_features = self._calculate_metafeatures_with_limits(
            metafeature_calculation_time_limit)
        metafeature_calculation_end_time = time.time()
        metafeature_calculation_time_limit = \
            metafeature_calculation_time_limit - (
            metafeature_calculation_end_time -
            metafeature_calculation_start_time)

        if metafeature_calculation_time_limit < 1:
            self.logger.warning('Time limit for metafeature calculation less '
                                'than 1 seconds (%f). Skipping calculation '
                                'of metafeatures for encoded dataset.',
                                metafeature_calculation_time_limit)
            meta_features_encoded = None
        else:
            self.datamanager.perform1HotEncoding()
            meta_features_encoded = \
                self._calculate_metafeatures_encoded_with_limits(
                    metafeature_calculation_time_limit)

        # In case there is a problem calculating the encoded meta-features
        if meta_features is None:
            if meta_features_encoded is not None:
                meta_features = meta_features_encoded
        else:
            if meta_features_encoded is not None:
                meta_features.metafeature_values.update(
                    meta_features_encoded.metafeature_values)

        if meta_features is not None:
            meta_base.add_dataset(instance_id, meta_features)
            # Do mean imputation of the meta-features - should be done specific
            # for each prediction model!
            all_metafeatures = meta_base.get_metafeatures(
                features=list(meta_features.keys()))
            all_metafeatures.fillna(all_metafeatures.mean(), inplace=True)

            metalearning_configurations = self.collect_metalearning_suggestions(
                meta_base)
            if metalearning_configurations is None:
                metalearning_configurations = []
            self.reset_data_manager()

            self.logger.info('%s', meta_features)

            # Convert meta-features into a dictionary because the scenario
            # expects a dictionary
            meta_features_dict = {}
            for dataset, series in all_metafeatures.iterrows():
                meta_features_dict[dataset] = series.values
            meta_features_list = []
            for meta_feature_name in all_metafeatures.columns:
                meta_features_list.append(meta_features[meta_feature_name].value)
            meta_features_list = np.array(meta_features_list).reshape((1, -1))
            self.logger.info(list(meta_features_dict.keys()))

            meta_runs = meta_base.get_all_runs(METRIC_TO_STRING[self.metric])
            meta_runs_index = 0
            try:
                meta_durations = meta_base.get_all_runs('runtime')
                read_runtime_data = True
            except KeyError:
                read_runtime_data = False
                self.logger.critical('Cannot read runtime data.')
                if self.acquisition_function == 'EIPS':
                    self.logger.critical('Reverting to acquisition function EI!')
                    self.acquisition_function = 'EI'

            for meta_dataset in meta_runs.index:
                meta_dataset_start_index = meta_runs_index
                for meta_configuration in meta_runs.columns:
                    if np.isfinite(meta_runs.loc[meta_dataset, meta_configuration]):
                        try:
                            config = meta_base.get_configuration_from_algorithm_index(
                                meta_configuration)
                            cost = meta_runs.loc[meta_dataset, meta_configuration]
                            if read_runtime_data:
                                runtime = meta_durations.loc[meta_dataset,
                                                             meta_configuration]
                            else:
                                runtime = 1
                            # TODO read out other status types!
                            meta_runhistory.add(config, cost, runtime,
                                                StatusType.SUCCESS,
                                                instance_id=meta_dataset)
                            meta_runs_index += 1
                        except:
                            # TODO maybe add warning
                            pass

                meta_runs_dataset_indices[meta_dataset] = (
                    meta_dataset_start_index, meta_runs_index)
        else:
            if self.acquisition_function == 'EIPS':
                self.logger.critical('Reverting to acquisition function EI!')
                self.acquisition_function = 'EI'
            meta_features_list = []
            meta_features_dict = {}
            metalearning_configurations = []

        self.scenario = AutoMLScenario(self.config_space,
                                       self.total_walltime_limit,
                                       self.func_eval_time_limit,
                                       meta_features_dict,
                                       self.tmp_dir,
                                       self.shared_mode)

        types = get_types(self.config_space, self.scenario.feature_array)
        if self.acquisition_function == 'EI':
            rh2EPM = RunHistory2EPM4Cost(num_params=num_params,
                                         scenario=self.scenario,
                                         success_states=None,
                                         impute_censored_data=False,
                                         impute_state=None)
            model = RandomForestWithInstances(types,
                                              instance_features=meta_features_list,
                                              seed=1, num_trees=10)
            smac = SMBO(self.scenario, model=model,
                        rng=seed)
        elif self.acquisition_function == 'EIPS':
            rh2EPM = RunHistory2EPM4EIPS(num_params=num_params,
                                         scenario=self.scenario,
                                         success_states=None,
                                         impute_censored_data=False,
                                         impute_state=None)
            model = UncorrelatedMultiObjectiveRandomForestWithInstances(
                ['cost', 'runtime'], types, num_trees = 10,
                instance_features=meta_features_list, seed=1)
            acquisition_function = EIPS(model)
            smac = SMBO(self.scenario,
                        acquisition_function=acquisition_function,
                        model=model, runhistory2epm=rh2EPM, rng=seed)
        else:
            raise ValueError('Unknown acquisition function value %s!' %
                             self.acquisition_function)

        # Build a runtime model
        # runtime_rf = RandomForestWithInstances(types,
        #                                        instance_features=meta_features_list,
        #                                        seed=1, num_trees=10)
        # runtime_rh2EPM = RunHistory2EPM4EIPS(num_params=num_params,
        #                                      scenario=self.scenario,
        #                                      success_states=None,
        #                                      impute_censored_data=False,
        #                                      impute_state=None)
        # X_runtime, y_runtime = runtime_rh2EPM.transform(meta_runhistory)
        # runtime_rf.train(X_runtime, y_runtime[:, 1].flatten())
        X_meta, Y_meta = rh2EPM.transform(meta_runhistory)
        # Transform Y_meta on a per-dataset base
        for meta_dataset in meta_runs_dataset_indices:
            start_index, end_index = meta_runs_dataset_indices[meta_dataset]
            end_index += 1  # Python indexing
            Y_meta[start_index:end_index, 0]\
                [Y_meta[start_index:end_index, 0] >2.0] =  2.0
            dataset_minimum = np.min(Y_meta[start_index:end_index, 0])
            Y_meta[start_index:end_index, 0] = 1 - (
                (1. - Y_meta[start_index:end_index, 0]) /
                (1. - dataset_minimum))
            Y_meta[start_index:end_index, 0]\
                  [Y_meta[start_index:end_index, 0] > 2] = 2

        # == first, evaluate all metelearning and default configurations
        for i, next_config in enumerate(([default_cfg] +
                                          metalearning_configurations)):
            # Do not evaluate default configurations more than once
            if i >= len([default_cfg]) and next_config in [default_cfg]:
                continue

            config_name = 'meta-learning' if i >= len([default_cfg]) \
                else 'default'

            self.logger.info("Starting to evaluate %d. configuration "
                             "(%s configuration) with time limit %ds.",
                             num_run, config_name, self.func_eval_time_limit)
            self.logger.info(next_config)
            self.reset_data_manager()
            info = eval_with_limits(self.datamanager, self.tmp_dir, next_config,
                                    seed, num_run,
                                    self.resampling_strategy,
                                    self.resampling_strategy_args,
                                    self.memory_limit,
                                    self.func_eval_time_limit)
            (duration, result, _, additional_run_info, status) = info
            run_history.add(config=next_config, cost=result,
                            time=duration , status=status,
                            instance_id=instance_id, seed=seed)
            run_history.update_cost(next_config, result)
            self.logger.info("Finished evaluating %d. configuration. "
                             "Duration %f; loss %f; status %s; additional run "
                             "info: %s ", num_run, duration, result,
                             str(status), additional_run_info)
            num_run += 1
            if smac.incumbent is None:
                smac.incumbent = next_config
            elif result < run_history.get_cost(smac.incumbent):
                smac.incumbent = next_config

            if self.scenario.shared_model:
                pSMAC.write(run_history=run_history,
                            output_directory=self.scenario.output_dir,
                            num_run=self.seed)

        # == after metalearning run SMAC loop
        smac.runhistory = run_history
        smac_iter = 0
        finished = False
        while not finished:
            if self.scenario.shared_model:
                pSMAC.read(run_history=run_history,
                           output_directory=self.scenario.output_dir,
                           configuration_space=self.config_space,
                           logger=self.logger)

            next_configs = []
            time_for_choose_next = -1
            try:
                X_cfg, Y_cfg = rh2EPM.transform(run_history)

                if not run_history.empty():
                    # Update costs by normalization
                    dataset_minimum = np.min(Y_cfg[:, 0])
                    Y_cfg[:, 0] = 1 - ((1. - Y_cfg[:, 0]) /
                                       (1. - dataset_minimum))
                    Y_cfg[:, 0][Y_cfg[:, 0] > 2] = 2

                if len(X_meta) > 0 and len(X_cfg) > 0:
                    pass
                    #X_cfg = np.concatenate((X_meta, X_cfg))
                    #Y_cfg = np.concatenate((Y_meta, Y_cfg))
                elif len(X_meta) > 0:
                    X_cfg = X_meta.copy()
                    Y_cfg = Y_meta.copy()
                elif len(X_cfg) > 0:
                    X_cfg = X_cfg.copy()
                    Y_cfg = Y_cfg.copy()
                else:
                    raise ValueError('No training data for SMAC random forest!')

                self.logger.info('Using %d training points for SMAC.' %
                                 X_cfg.shape[0])
                choose_next_start_time = time.time()
                next_configs_tmp = smac.choose_next(X_cfg, Y_cfg,
                                                    num_interleaved_random=110,
                                                    num_configurations_by_local_search=10,
                                                    num_configurations_by_random_search_sorted=100)
                time_for_choose_next = time.time() - choose_next_start_time
                self.logger.info('Used %g seconds to find next '
                                 'configurations' % (time_for_choose_next))
                next_configs.extend(next_configs_tmp)
            # TODO put Exception here!
            except Exception as e:
                self.logger.error(e)
                self.logger.error("Error in getting next configurations "
                                  "with SMAC. Using random configuration!")
                next_config = self.config_space.sample_configuration()
                next_configs.append(next_config)

            models_fitted_this_iteration = 0
            start_time_this_iteration = time.time()
            for next_config in next_configs:
                x_runtime = impute_inactive_values(next_config)
                x_runtime = impute_inactive_values(x_runtime).get_array()
                # predicted_runtime = runtime_rf.predict_marginalized_over_instances(
                #     x_runtime.reshape((1, -1)))
                # predicted_runtime = np.exp(predicted_runtime[0][0][0]) - 1

                self.logger.info("Starting to evaluate %d. configuration (from "
                                 "SMAC) with time limit %ds.", num_run,
                                 self.func_eval_time_limit)
                self.logger.info(next_config)
                self.reset_data_manager()
                info = eval_with_limits(self.datamanager, self.tmp_dir, next_config,
                                        seed, num_run,
                                        self.resampling_strategy,
                                        self.resampling_strategy_args,
                                        self.memory_limit,
                                        self.func_eval_time_limit)
                (duration, result, _, additional_run_info, status) = info
                run_history.add(config=next_config, cost=result,
                                time=duration , status=status,
                                instance_id=instance_id, seed=seed)
                run_history.update_cost(next_config, result)

                #self.logger.info('Predicted runtime %g, true runtime %g',
                #                 predicted_runtime, duration)

                # TODO add unittest to make sure everything works fine and
                # this does not get outdated!
                if smac.incumbent is None:
                    smac.incumbent = next_config
                elif result < run_history.get_cost(smac.incumbent):
                    smac.incumbent = next_config

                self.logger.info("Finished evaluating %d. configuration. "
                                 "Duration: %f; loss: %f; status %s; additional "
                                 "run info: %s ", num_run, duration, result,
                                 str(status), additional_run_info)
                smac_iter += 1
                num_run += 1

                models_fitted_this_iteration += 1
                time_used_this_iteration = time.time() - start_time_this_iteration
                if models_fitted_this_iteration >= 2 and \
                        time_for_choose_next > 0 and \
                        time_used_this_iteration > time_for_choose_next:
                    break
                elif time_for_choose_next <= 0 and \
                        models_fitted_this_iteration >= 1:
                    break
                elif models_fitted_this_iteration >= 50:
                    break

                if max_iters is not None:
                    finished = (smac_iter < max_iters)

            if self.scenario.shared_model:
                pSMAC.write(run_history=run_history,
                            output_directory=self.scenario.output_dir,
                            num_run=self.seed)
Esempio n. 16
0
 def test_init_only_scenario_quality(self):
     smbo = SMBO(self.scenario)
     self.assertIsInstance(smbo.model, RandomForestWithInstances)
     np.testing.assert_allclose(smbo.types, smbo.model.types)
     self.assertIsInstance(smbo.rh2EPM, RunHistory2EPM4Cost)
     self.assertIsInstance(smbo.acquisition_func, EI)