# Discover the magic number net = convVAE(dim_z,x_train,x_test) get_magic = net.get_flattened(net.x_train[:2,:,:,:]) # actual nework #net1 = convVAE(dim_z,x_train,x_test,diff = dif,magic = get_magic.shape[1]) net = convVAE(dim_z,x_train,x_test,diff=None,magic = get_magic.shape[1]) # load the parameters from the model: params = pickle_loader(model_dir+"model.pkl") for p in params: net.params.set_value(p.get_value()) # Writing paths path_array,original_array = sound_write.path_write(net,sample_rate,duration = 3.,data_points = 10) wav.write("sound/"+experiment_name+"_paths_rewrite.wav",sample_rate,path_array) wav.write("sound/"+experiment_name+"_paths_original_rewrite.wav",sample_rate,original_array) # Reconstruction sounds and random latent configurations random,reconstruction,original = sound_write.sample_write(net,sample_rate,duration = 10) wav.write("sound/"+experiment_name+"_random_rewrite.wav",sample_rate,random) wav.write("sound/"+experiment_name+"_reconstruction_rewrite.wav",sample_rate,reconstruction) wav.write("sound/"+experiment_name+"_reconstruction_original_rewrite.wav",sample_rate,original) # Weights plot_params(net.params,weight_plot_dir) #ou1 = net1.output(x_train[:50]) idxx = np.random.randint(0,x_train.shape[0],50) # Reconstruction images ou2 = net.output(x_train[idxx]) for i in range(ou2.shape[0]): if i <100:
print "magic_value", net.magic iterations = 100 disc = 1.01 for i in range(iterations): net1.iterate() net2.iterate() rows = 1 columns = 3 print "ITERATION", i print net2.performance['train'][-1] net1.dropout_prob.set_value(np.float32(0.0)) net2.dropout_prob.set_value(np.float32(0.0)) path_array, original_array = sound_write.path_write(net2, 880, duration=0.2, data_points=10) wav.write("sound/" + experiment_name + "_paths.wav", sample_rate, path_array) wav.write("sound/" + experiment_name + "_paths_original.wav", sample_rate, original_array) random, reconstruction, original = sound_write.sample_write(net1, 880, duration=10) wav.write("sound/" + experiment_name + "_random.wav", sample_rate, random) wav.write("sound/" + experiment_name + "_reconstruction.wav", sample_rate, reconstruction) wav.write("sound/" + experiment_name + "_reconstruction_original.wav", sample_rate, original)
print net.performance['train'][-1] ###### Shifting experiments #### num = 100 h_val = np.zeros([num,net.magic]).astype(np.float32) for i in range(num): h_val[i,i]=1 out = net.generate_h(h_val) plt.plot(out.T) plt.show() pdb.set_trace() ############## ALL THE BOOKEEPING ######################### # Writing paths path_array,original_array = sound_write.path_write(net,880,duration = 0.2,data_points = 10) wav.write("sound/"+experiment_name+"_paths.wav",sample_rate,path_array) wav.write("sound/"+experiment_name+"_paths_original.wav",sample_rate,original_array) # Reconstruction sounds and random latent configurations random,reconstruction,original = sound_write.sample_write(net,880,duration = 10) wav.write("sound/"+experiment_name+"_random.wav",sample_rate,random) wav.write("sound/"+experiment_name+"_reconstruction.wav",sample_rate,reconstruction) wav.write("sound/"+experiment_name+"_reconstruction_original.wav",sample_rate,original) # Weights plot_params(net.params,weight_plot_dir) #ou1 = net1.output(x_train[:50]) # Reconstruction images ou2 = net.output(x_train[:50]) for i in range(ou2.shape[0]): if i <100: