Esempio n. 1
0
def number_of_articulation_points(G, GName):

    ArtNIdV = snap.TIntV()
    snap.GetArtPoints(G, ArtNIdV)
    articulation_points_in_graph = len(ArtNIdV)

    print "Number of articulation points in {0}: {1}".format(
        GName[:-10], articulation_points_in_graph)
Esempio n. 2
0
def getArticulationPoints(Graph, node_to_g):
    ''' A vertex in an undirected connected graph is an articulation point (or cut vertex)
 iff removing it (and edges through it) disconnects the graph.
 Articulation points represent vulnerabilities in a connected network –
 single points whose failure would split the network into 2 or more disconnected components.
 They are useful for designing reliable networks. '''
    prot_to_articulation_points = {}
    ArtNIdV = snap.TIntV()
    snap.GetArtPoints(Graph, ArtNIdV)
    for node in ArtNIdV:
        my_prot = node_to_g[node]
        prot_to_articulation_points[my_prot] = True
    return prot_to_articulation_points
Esempio n. 3
0
def print_components(G):
    """
    Prints the fraction of nodes in the largest component of subgraph G
    Also prints the number of edge bridges and articulation points
    """

    print("Fraction of nodes in largest connected component:", round(snap.GetMxWccSz(G), 4))

    EdgeV = snap.TIntPrV()
    snap.GetEdgeBridges(G, EdgeV)
    print("Number of edge bridges:", EdgeV.Len())

    ArtNIdV = snap.TIntV()
    snap.GetArtPoints(G, ArtNIdV)
    print("Number of articulation points:", ArtNIdV.Len())
Esempio n. 4
0
      (average, variance))
#c Plot
snap.PlotShortPathDistr(fbsgel, "shortest_path_" + str(subgraph_name),
                        "shortest_path_" + str(subgraph_name))

#Q4
#a
print("Fraction of nodes in largest connected component:",
      round(snap.GetMxSccSz(fbsgel), 4))
#b
EdgeBridgeV = snap.TIntPrV()
snap.GetEdgeBridges(fbsgel, EdgeBridgeV)
print("Number of edge bridges:", len(EdgeBridgeV))
#c
ArtNIdV = snap.TIntV()
snap.GetArtPoints(fbsgel, ArtNIdV)
print("Number of articulation points:", len(ArtNIdV))
#d Plot
snap.PlotSccDistr(fbsgel, "connected_comp_" + str(subgraph_name),
                  "connected_comp_" + str(subgraph_name))

#Q5
#a
print("Average clustering coefficient:", round(snap.GetClustCf(fbsgel, -1), 4))
#b
print("Number of triads:", snap.GetTriads(fbsgel, -1))
#c
RnId = fbsgel.GetRndNId(Rnd)
print("Clustering coefficient of random node " + str(RnId) + ":",
      round(snap.GetNodeClustCf(fbsgel, RnId), 4))
#d
      (effmean, effvar))

str1 = 'shortest_path_' + file_name
snap.PlotShortPathDistr(Graph1, str1, "Distribution of shortest path lengths")

#4.Components of the network
fraction = snap.GetMxSccSz(Graph1)
print("Fraction of nodes in largest connected component: %0.4f" % fraction)

V_edges = snap.TIntPrV()
snap.GetEdgeBridges(Graph1, V_edges)
edge_bridges = V_edges.Len()
print("Number of edge bridges: ", edge_bridges)

Art_points = snap.TIntV()
snap.GetArtPoints(Graph1, Art_points)
art = Art_points.Len()
print("Number of articulation points: ", art)

str2 = "connected_comp_" + file_name
snap.PlotSccDistr(Graph1, str2,
                  "Distribution of sizes of connected components")

#5.Connectivity and clustering in the network
avg_cc = snap.GetClustCf(Graph1, -1)
print("Average clustering coefficient: %0.4f" % avg_cc)
triads = snap.GetTriads(Graph1, -1)
print("Number of triads: ", triads)

random1 = Graph1.GetRndNId(Rnd)
node_cc = snap.GetNodeClustCf(Graph1, random1)
def get_articulation_points(graph):
    articulation_points = snap.TIntV()
    snap.GetArtPoints(graph, articulation_points)
    return articulation_points
Esempio n. 7
0
def graphStructure(elistName, elistPath):
    """
        Calculate properties of the graph as given in the assignment

        Args:
        elistName (str) -> Input elist name
        elistPath (pathlib.Path) -> Input elist using which graph needs to be built

        Return:
        RESULTS (dict) -> Dictionary containing results for different subparts of the assignment
    """

    RESULTS = {}
    subGraph = snap.LoadEdgeList(snap.PUNGraph, elistPath, 0, 1)

    # Part 1 (Size of the network)
    RESULTS['nodeCount'] = subGraph.GetNodes()
    RESULTS['edgeCount'] = subGraph.GetEdges()

    # Part 2 (Degree of nodes in the network)
    maxDegree = 0
    maxDegreeNodes = []
    degree7Count = 0

    for node in subGraph.Nodes():
        if node.GetDeg() == 7:
            degree7Count += 1

        maxDegree = max(maxDegree, node.GetDeg())

    for node in subGraph.Nodes():
        if node.GetDeg() == maxDegree:
            maxDegreeNodes.append(node.GetId())

    plotFilename = f"deg_dist_{elistName}"
    # Since it is an undirected graph, in/out degree is unimportant
    snap.PlotOutDegDistr(subGraph, plotFilename)

    RESULTS['maxDegree'] = maxDegree
    RESULTS['maxDegreeNodes'] = ','.join(map(str, maxDegreeNodes))
    RESULTS['degree7Count'] = degree7Count

    # Part 3 (Paths in the network)
    # Full Diameter Calculation
    fullDiameters = {
        10: snap.GetBfsFullDiam(subGraph, 10, False),
        100: snap.GetBfsFullDiam(subGraph, 100, False),
        1000: snap.GetBfsFullDiam(subGraph, 1000, False)
    }
    fullMean, fullVariance = meanVariance(fullDiameters.values())
    fullDiameters['mean'] = fullMean
    fullDiameters['variance'] = fullVariance
    RESULTS['fullDiameters'] = fullDiameters

    # Effective Diameter Calculation
    effDiameters = {
        10: snap.GetBfsEffDiam(subGraph, 10, False),
        100: snap.GetBfsEffDiam(subGraph, 100, False),
        1000: snap.GetBfsEffDiam(subGraph, 1000, False),
    }
    effMean, effVariance = meanVariance(effDiameters.values())
    effDiameters['mean'] = effMean
    effDiameters['variance'] = effVariance
    RESULTS['effDiameters'] = effDiameters

    plotFilename = f"shortest_path_{elistName}"
    snap.PlotShortPathDistr(subGraph, plotFilename)

    # Part 4 (Components of the network)
    edgeBridges = snap.TIntPrV()
    articulationPoints = snap.TIntV()
    RESULTS['fractionLargestConnected'] = snap.GetMxSccSz(subGraph)
    snap.GetEdgeBridges(subGraph, edgeBridges)
    snap.GetArtPoints(subGraph, articulationPoints)
    RESULTS['edgeBridges'] = len(edgeBridges)
    RESULTS['articulationPoints'] = len(articulationPoints)

    plotFilename = f"connected_comp_{elistName}"
    snap.PlotSccDistr(subGraph, plotFilename)

    # Part 5 (Connectivity and clustering in the network)
    RESULTS['avgClusterCoefficient'] = snap.GetClustCf(subGraph, -1)
    RESULTS['triadCount'] = snap.GetTriadsAll(subGraph, -1)[0]

    nodeX = subGraph.GetRndNId(Rnd)
    nodeY = subGraph.GetRndNId(Rnd)
    RESULTS['randomClusterCoefficient'] = (nodeX,
                                           snap.GetNodeClustCf(
                                               subGraph, nodeX))
    RESULTS['randomNodeTriads'] = (nodeY, snap.GetNodeTriads(subGraph, nodeY))
    RESULTS['edgesTriads'] = snap.GetTriadEdges(subGraph)

    plotFilename = f"clustering_coeff_{elistName}"
    snap.PlotClustCf(subGraph, plotFilename)

    return RESULTS
def is_articulation_point(G, n):
    ArtNIdV = snap.TIntV()
    snap.GetArtPoints(G, ArtNIdV)
    return n in ArtNIdV
def main():

    parentDir = os.getcwd()
    os.chdir(parentDir + "/subgraphs")
    sub_graph = snap.LoadEdgeList(snap.PUNGraph, sys.argv[1], 0, 1)
    subGraphName = sys.argv[1].split(".")[0]
    os.chdir(parentDir)

    #### 1 ########
    node_count = 0
    for node in sub_graph.Nodes():
        node_count = node_count + 1

    printWithOutNewLine("Number of nodes:", node_count)
    printWithOutNewLine("Number of edges:", snap.CntUniqBiDirEdges(sub_graph))

    #### 2 ########
    printWithOutNewLine("Number of nodes with degree=7:",
                        snap.CntDegNodes(sub_graph, 7))

    rndMaxDegNId = snap.GetMxDegNId(sub_graph)
    nodeDegPairs = snap.TIntPrV()
    snap.GetNodeInDegV(sub_graph, nodeDegPairs)
    maxDegVal = 0

    for pair in nodeDegPairs:
        if (pair.GetVal1() == rndMaxDegNId):
            maxDegVal = pair.GetVal2()
            break

    maxDegNodes = []
    for pair in nodeDegPairs:
        if (pair.GetVal2() == maxDegVal):
            maxDegNodes.append(pair.GetVal1())

    print("Node id(s) with highest degree:", end=" ")
    print(*maxDegNodes, sep=',')

    #### 3 ########
    sampledFullDiam = []
    sampledFullDiam.append(snap.GetBfsFullDiam(sub_graph, 10, False))
    sampledFullDiam.append(snap.GetBfsFullDiam(sub_graph, 100, False))
    sampledFullDiam.append(snap.GetBfsFullDiam(sub_graph, 1000, False))

    sampledFullDiamStats = []
    sampledFullDiamStats.append(round(statistics.mean(sampledFullDiam), 4))
    sampledFullDiamStats.append(round(statistics.variance(sampledFullDiam), 4))

    printWithOutNewLine("Approximate full diameter by sampling 10 nodes:",
                        sampledFullDiam[0])
    printWithOutNewLine("Approximate full diameter by sampling 100 nodes:",
                        sampledFullDiam[1])
    printWithOutNewLine("Approximate full diameter by sampling 1000 nodes:",
                        sampledFullDiam[2])
    print("Approximate full diameter (mean and variance):", end=" ")
    print(*sampledFullDiamStats, sep=',')

    sampledEffDiam = []
    sampledEffDiam.append(round(snap.GetBfsEffDiam(sub_graph, 10, False), 4))
    sampledEffDiam.append(round(snap.GetBfsEffDiam(sub_graph, 100, False), 4))
    sampledEffDiam.append(round(snap.GetBfsEffDiam(sub_graph, 1000, False), 4))

    sampledEffDiamStats = []
    sampledEffDiamStats.append(round(statistics.mean(sampledEffDiam), 4))
    sampledEffDiamStats.append(round(statistics.variance(sampledEffDiam), 4))

    printWithOutNewLine("Approximate effective diameter by sampling 10 nodes:",
                        sampledEffDiam[0])
    printWithOutNewLine(
        "Approximate effective diameter by sampling 100 nodes:",
        sampledEffDiam[1])
    printWithOutNewLine(
        "Approximate effective diameter by sampling 1000 nodes:",
        sampledEffDiam[2])
    print("Approximate effective diameter (mean and variance):", end=" ")
    print(*sampledEffDiamStats, sep=',')

    #### 4 ########
    printWithOutNewLine("Fraction of nodes in largest connected component:",
                        round(snap.GetMxSccSz(sub_graph), 4))

    bridgeEdges = snap.TIntPrV()
    snap.GetEdgeBridges(sub_graph, bridgeEdges)
    printWithOutNewLine("Number of edge bridges:", len(bridgeEdges))

    articulationPoints = snap.TIntV()
    snap.GetArtPoints(sub_graph, articulationPoints)
    printWithOutNewLine("Number of articulation points:",
                        len(articulationPoints))

    #### 5 ########
    printWithOutNewLine("Average clustering coefficient:",
                        round(snap.GetClustCf(sub_graph, -1), 4))

    printWithOutNewLine("Number of triads:", snap.GetTriads(sub_graph, -1))

    randomNodeId = sub_graph.GetRndNId()
    nodeIdCcfMap = snap.TIntFltH()
    snap.GetNodeClustCf(sub_graph, nodeIdCcfMap)

    print("Clustering coefficient of random node", end=" ")
    print(randomNodeId, end=": ")
    print(round(nodeIdCcfMap[randomNodeId], 4))

    print("Number of triads random node", end=" ")
    print(randomNodeId, end=" participates: ")
    print(snap.GetNodeTriads(sub_graph, randomNodeId))

    printWithOutNewLine(
        "Number of edges that participate in at least one triad:",
        snap.GetTriadEdges(sub_graph, -1))

    #### plots ########
    if not os.path.isdir('plots'):
        os.makedirs('plots')

    os.chdir(parentDir + "/plots")
    plotsDir = os.getcwd()

    snap.PlotOutDegDistr(sub_graph, subGraphName,
                         subGraphName + " Subgraph Degree Distribution")
    snap.PlotShortPathDistr(
        sub_graph, subGraphName,
        subGraphName + " Subgraph Shortest Path Lengths Distribution")
    snap.PlotSccDistr(
        sub_graph, subGraphName,
        subGraphName + " Subgraph Connected Components Size Distribution")
    snap.PlotClustCf(
        sub_graph, subGraphName,
        subGraphName + " Subgraph Clustering Coefficient Distribution")

    files = os.listdir(plotsDir)

    for file in files:
        if not file.endswith(".png"):
            os.remove(os.path.join(plotsDir, file))

    plots = os.listdir(plotsDir)
    filePrefix = "filename"
    for file in plots:
        nameSplit = file.split(".")
        if (len(nameSplit) == 2):
            continue
        if (nameSplit[0] == "ccf"):
            filePrefix = "clustering_coeff_"
        elif (nameSplit[0] == "outDeg"):
            filePrefix = "deg_dist_"
        elif (nameSplit[0] == "diam"):
            filePrefix = "shortest_path_"
        elif (nameSplit[0] == "scc"):
            filePrefix = "connected_comp_"

        os.rename(file, filePrefix + nameSplit[1] + "." + nameSplit[2])

    os.chdir(parentDir)
    EdgeV = snap.TIntPrV()
    snap.GetEdgeBridges(p2p_gnutella04_subgraph, EdgeV)

    edge_bridge = 0
    for i in EdgeV:
        edge_bridge = edge_bridge + 1
    print "Number of edge bridges in p2p-Gnutella04-subgraph :" + str(
        edge_bridge)

# Task 1.2.4.3

if (sub_graph_name == "soc-Epinions1-subgraph"):
    # Calculating no of Articulation points

    ArtNIdV = snap.TIntV()
    snap.GetArtPoints(soc_epinions1_subgraph, ArtNIdV)

    art_point = 0
    for NI in ArtNIdV:
        art_point = art_point + 1
    print "Number of articulation points in soc-Epinions1-subgraph :" + str(
        art_point)
if (sub_graph_name == "cit-HepPh-subgraph"):
    # Calculating no of Articulation points

    ArtNIdV = snap.TIntV()
    snap.GetArtPoints(cit_heph_subgraph, ArtNIdV)

    art_point = 0
    for NI in ArtNIdV:
        art_point = art_point + 1
Esempio n. 11
0
"""
FOR FASTER COMPUTATION, UNCOMMENT THE FOLLOWING LINE AND COMMENT OUT LINE 107-125
"""
# snap.PlotShortPathDistr(G, "shortest_path_{}".format(graph_filename[:-6]), "Shortest Path Distribution ({})".format(graph_filename[:-6]))

# [4] Components of the network
SCC = snap.GetMxScc(G)
print("Fraction of nodes in largest connected component: {}".format(
    round(SCC.GetNodes() / G.GetNodes(), 4)))

Edge_Bridge = snap.TIntPrV()
snap.GetEdgeBridges(G, Edge_Bridge)
print("Number of edge bridges: {}".format(len(Edge_Bridge)))

ArticulationPoint = snap.TIntV()
snap.GetArtPoints(G, ArticulationPoint)
print("Number of articulation points: {}".format(len(ArticulationPoint)))

CComp = snap.TIntPrV()
snap.GetSccSzCnt(G, CComp)
connected_component = {}
for comp in CComp:
    connected_component[comp.GetVal1()] = comp.GetVal2()

# Plot Degree Distribution
plot_filename = 'connected comp_' + graph_filename[:-6] + '.png'
plot_filedir = os.path.join(plotpath, plot_filename)
plt.figure()
plt.scatter(list(connected_component.keys()),
            list(connected_component.values()),
            s=15)
Esempio n. 12
0
NIdHubH = snap.TIntFltH()
NIdAuthH = snap.TIntFltH()
snap.GetHits(G, NIdHubH, NIdAuthH)
write(NIdHubH, "hub.txt")
write(NIdAuthH, "auth.txt")

Nodes = snap.TIntFltH()
Edges = snap.TIntPrFltH()
snap.GetBetweennessCentr(G, Nodes, Edges, 1.0)
write(Nodes, "between.txt")

rows = []
for i, node in enumerate(G.Nodes()):
    if i % 10000 == 0:
        print "on iteration {}".format(i)
    nid = node.GetId()
    ecc = snap.GetNodeEcc(G, nid)
    clust = snap.GetNodeClustCf(G, nid)
    rows.append([nid, ecc, clust])

with open(base + "ecc_clust.txt", 'w') as f:
    for row in rows:
        f.write(",".join(map(str, row)) + "\n")

ArtNIdV = snap.TIntV()
snap.GetArtPoints(G, ArtNIdV)

with open(base + "art.txt", "w") as f:
    for NI in ArtNIdV:
        f.write("{}\n".format(NI))
Esempio n. 13
0
    #Question 4

    ## Max Comp Fraction
    MxConCompSize = sn.GetMxScc(graph).GetNodes()
    print("Fraction of nodes in largest connected component: {:0.4f}".format(
        MxConCompSize / graph.GetNodes()))

    ## Edge Bridges
    edgeBridge = sn.TIntPrV()
    sn.GetEdgeBridges(graph, edgeBridge)
    print("Number of edge bridges: {}".format(len(edgeBridge)))

    ## Articulation Points
    artPoints = sn.TIntV()
    sn.GetArtPoints(graph, artPoints)
    print("Number of articulation points: {}".format(len(artPoints)))

    ## Connected Components Distribution
    sn.PlotSccDistr(graph, name, "Connected Component Distribution")
    plotRemove("scc", "connected_comp", name)

    #Question 5

    ## Clustering Coefficient
    print("Average clustering coefficient: {:0.4f}".format(
        sn.GetClustCf(graph)))

    ## Triads
    print("Number of triads: {}".format(sn.GetTriads(graph)))